Syllabus Book

B. Tech. (Mechanical Engineering)

P P Savani University School of Engineering

Effective From: 2021-22

Authored by: P P Savani University

CONTENT

Sr. No.	Content	Page No
1	Syllabi of First Year	1 to 28
2	Syllabi of Second Year	29 to 73
3	Syllabi of Third Year	74 to 112
4	Syllabi of Fourth Year	113 to 174

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. MECHANICAL ENGINEERING PROGRAMME AY:2021-22

				Teaching Scheme			iing Scheme				Examination Scheme				
Sem	Course Code	Course Title	Offered By		Contact 1	Hours				Theory		Practical		orial	Total
				Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	SESH1070	Fundamentals of Mathematics	SH	2	0	2	4	4	40	60	0	0	50	0	150
	SEME1010	Engineering Graphics	ME	3	4	0	7	5	40	60	40	60	0	0	200
1	SEME1020	Engineering Workshop	ME	0	2	0	2	1	0	0	50	0	0	0	50
1	SESH1210	Applied Physics	SH	3	2	0	5	4	40	60	20	30	0	0	150
	SEHV1010	Universal Human Values - I	SH	2	0	0	2	0	100	0	0	0	0	0	100
						Total	20	14							650
	SESH1080	Linear Algebra & Calculus	SH	3	0	2	5	5	40	60	0	0	50	0	150
	SESH1240	Electrical & Electronics Workshop	ME	0	2	0	2	1	0	0	50	0	0	0	50
	SECV1040	Basics of Civil & Mechanical Engineering	CV	4	2	0	6	5	40	60	20	30	0	0	150
2	SECV1080	Mechanics of Solids	CV	4	2	0	6	5	40	60	20	30	0	0	150
	SECE1010	Basics of Computer & Programming	CE	3	2	0	5	4	40	60	20	30	0	0	150
	CFLS1010	Linguistic Proficiency	CFLS	2	0	0	2	2	40	60	0	0	0	0	100
			·		·	Total	26	22							750

Department of Applied Science and Humanities

Course Code: SESH1070

Course Name: Fundamentals of Mathematics

Prerequisite Course(s): Algebra, Geometry, Trigonometry & Pre-Calculus till 12th Standard level

Teaching & Examination Scheme:

Teacl	Teaching Scheme (Hours/Week)				Examination Scheme (Marks)					
Theory	heory Practical Tutorial Credi		orial Credit –		eory	Prac	tical	Tuto	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
2	0	2	4	40	60	0	0	50	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- summarize concept of calculus to enhance ability of analysing mathematical problems.
- acquire knowledge and ability to work with differentiation and integration for
- applications of mathematical techniques in engineering.
- develop the tool of power series for learning advanced Engineering Mathematics.
- analyse and solve system of linear equations and understand characteristics of Matrices.

	Section I								
Module No.	Content	Hours	Weightage in %						
1	Calculus Limits, Continuity, Types of Discontinuity, Successive Differentiation, Rolle's Theorem, LMVT, CMVT, Maxima and Minima.	8	28						
2	Sequence and Series-I Convergence and Divergence, Comparison Test, Integral Test, Ratio Test, Root Test, Alternating Series, Absolute and Conditional Convergence.	6	20						
	Section II								
Module No.	Content	Hours	Weightage in %						
1	Sequence and Series-II Power series, Taylor and Macluarin series, Indeterminate forms and L'Hospitals Rule.	6	20						
2	Matrix Algebra Elementary Row and Column operations, Inverse of matrix, Rank of matrix, System of Linear Equations, Characteristic Equation, Eigen values and Eigen vector, Diagonalization, Cayley Hamilton Theorem, Orthogonal Transformation	10	32						

List of Tutorial:

Sr. No.	Name of Tutorial	Hours
1.	Calculus-1	2
2.	Calculus-2	2
3.	Integration	2
4	Sequence and Series-1	2
5.	Sequence and Series-2	2
6.	Sequence and Series-3	2
7.	Matrix Algebra-1	2
8.	Matrix Algebra-2	2
9.	Matrix Algebra-3	2
10.	Matrix Algebra-4	2

Text Book(s):

Title	Author/s	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir & Joel	Pearson
	Hass	
Elementary linear Algebra	Howard Anton and Chrish Rorres	Wiley

Reference Book(s):

Title	Author(s)	Publication
Advanced Engineering Mathematics	E Kreyszig	John Wiley and Sons
A textbook of Engineering Mathematics	N P Bali and Manish Goyal	Laxmi
Higher Engineering Mathematics	B S Grewal	Khanna
Engineering Mathematics for First Year	T Veerarajan	Tata Mc Graw Hill
Engineering Mathematics-1 (Calculus)	H. K. Dass, Dr. Rama Verma	S. Chand

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SESH1070	FUNDAMENTALS OF MATHEMATICS
CO 1	To recall the concepts of limit, continuity and differentiability for analysing
	mathematical problems.
CO 2	Explain concepts of limit, derivatives and integrals.

CO 3	Analyze the series for its convergence and divergence to slove real world problems.
CO 4	Evaluate linear system using matrices.
CO 5	Adapt the knowledge of eigenvalues and eigenvectors for matrix diagonalization

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Calculus	1, 2, 3, 4
2	Sequence and Series – I	1, 2, 3, 4
3	Sequence and Series – II	1, 2, 3, 4
4	Matrix Algebra	1, 2, 3, 4

Department of Mechanical Engineering

Course Code: SEME1010

Course Name: Engineering Graphics Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Theory Practical	actical Tutorial	Credit	Th	Theory		Practical		Tutorial	
Theory Fraction	Fractical			CE	ESE	CE	ESE	CE	ESE	Total
03	04	00	05	40	60	40	60	00	00	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- know conventions and the methods of engineering drawing.
- interpret engineering drawings using fundamental technical mathematics.
- construct basic and intermediate geometry.
- improve their visualization skills so that they can apply these skills in developing new products.
- improve their technical communication skill in the form of communicative drawings.
- comprehend the theory of projection.

	Section I					
Modul	Content	Hour	Weightag			
e No.	Content	S	e in %			
1.	Introduction: Importance of the Course; Use of Drawing Instruments and accessories; BIS – SP – 46; Lettering, Dimensioning and Lines; Representative Fraction; Types of Scales (Plain and Diagonal Scales); Construction of Polygons.	03	05%			
2.	Engineering Curves: Classification and Application of Engineering Curves; Construction of Conics, Cycloidal Curves, Involutes and Spiral along with Normal and Tangent to each.	06	15%			
3.	Principles of Projections: Types of Projections; Introduction of Principle Planes of Projections. Projection of Points & Line: Projection of Points in all four Quadrants; Projection of Lines with its inclination to one Referral Plane & two Referral Planes. Projection of Plane:	14	30%			

	Projection of Planes (Circular and Polygonal) with inclination		
	to one Referral Plane and two Referral Planes; Concept of		
	Auxiliary Projection Method.		
	Section II		
Modul	Content	Hour	Weightag
e No.	Content	S	e in %
	Projection and Section of Solids:		
	Projection of solids: Polyhedral, Prisms, Pyramids, Cylinder,	08	14%
4	Cone, Auxiliary Projection Method, One View, Two View and		
4.	Three View Drawings. Missing View, Rules for Selection of		
	Views; Sectional View, Section Plane Perpendicular to the HP &		
	VP and other Various Positions, True Shape of Sections.		
	Orthographic Projection:		
	Types of Projections: Principle of First and Third Angle		
5.	Projection -Applications & Difference; Projection from Pictorial	07	18%
	view of Object, View from Front, Top and Sides; Full Section		
	View.		
	Isometric Projections and Isometric Drawing:		
6.	Isometric Scale, Conversion of Orthographic views into	07	18%
	Isometric Projection, Isometric View or Drawing.		

List of Practical:

Sr.	Name of Practical	
No.		S
	Introduction sheet (dimensioning methods, different types of line,	
1.	construction of different polygon, divide the line and angle in parts, use of	08
	stencil, lettering)	
2.	Plane scale and diagonal scale	04
3.	Engineering curves	08
4.	Projection of Points & Lines	06
5.	Projection of Planes	08
6.	Projection of solid & Section of solid	10
7.	Orthographic projection	08
8.	Isometric projection	08

Text Book(s):

Title	Author(s)	Publication
A Text Book of Engineering Graphics	P J Shah	S. Chand & Company Ltd., New Delhi
Engineering Drawing	N D Bhatt	Charotar Publishing House, Anand

Reference Book(s):

Title	Author(s)	Publication
Engineering Drawing	P.S.Gill	S. K. Kataria & sons, Delhi
Engineering Drawing	B. Agrawal & C M Agrawal	Tata McGraw Hill, New Delhi
Engineering Drawing made Easy	K. Venugopal	Wiley Eastern Ltd

Web Material Link(s):

• http://nptel.ac.in/courses/105104148/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical/Tutorial which will be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 20 Marks.
- Internal Viva consists of 20 Marks.
- Practical performance/quiz/drawing/test will consist of 30 Marks during End Semester Exam.
- Viva/Oral performance will consist of 30 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME1010	ENGINEERING GRAPHICS
CO 1	Learn and understand the bis standards, conventions and methods of engineerng
	drawing.
CO 2	Explore the different methods to draw various engineering curves and its applications.
CO 3	Construct basic and intermediate geometry and comprehend the theory of projection.
CO 4	Improve visualization skills and apply it to develop a new product.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1, 2, 6
2	Engineering Curves	2, 6
3	Principles of Projections, Projection of Points and	1, 2, 3, 4
	Line, Projection of Plane	
4	Projection of Solids	2, 3, 4, 6
5	Orthographic Projection	2, 5, 4
6	Isometric Projections and Isometric Drawing	2, 5, 4

Department of Mechanical Engineering

Course Code: SEME1020

Course Name: Engineering Workshop Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	aminati	on Sche	me (Ma	rks)		
Tl	Practical	Tutorial	Credit -	The	eory	Practical		Tut	orial	Total
Theory				CE	ESE	CE	ESE	CE	ESE	Total
0	2	0	1	0	0	50	0	0	0	50

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about the safety measures required to be taken while using working in workshop.
- learn about how to select the appropriate tools required for specific operation.
- learn about different manufacturing technique for production out of the given raw material.
- understand applications of machine tools, hand tools, power tools and welding process.

	Section I					
Module No.	Content	Hours	Weightag e in %			
1.	Introduction: Introduction to Various Shops / Sections and Workshop Layouts, Safety Norms to be Followed in a Workshop.	-	-			
2.	Fitting Shop: Introduction of Fitting Shop; Safety; Making a Job as per Drawing including Marking and other Performing Operations.	-	-			
3.	Carpentry and Drilling Shop: Introduction of Carpentry Shop; Preparation of Job as per Drawing including Marking and other Performing Operations.	-	1			
	Section II					
4.	 Sheet Metal Shop: Introduction of Sheet Metal Shop; Preparation of Job as per Drawing including Marking and other Performing Operations 					
5.	Smithy Shop: Introduction of Sheet Metal Shop; Preparation of Job as per Drawing including Marking and other Performing Operations	-	-			
6.	Introduction to Machine Tools: Introduction and Demonstration of various Machine Tools like Lathe, Drilling, Grinding, Hack Saw Cutting etc.	-	-			

	Introduction to Welding & Plumbing:	
7.	Introduction and Demonstration of Welding process.	
	Introduction and Demonstration of Plumbing Shop.	

List of Practical:

Sr. No	Name of Practical	Hour
		S
1.	Introduction and Demonstration of Safety Norms. Different Measuring Instruments.	02
2.	To Perform a Job of Fitting Shop.	06
3.	To Perform a Job of Carpentry Shop.	06
4.	To Perform a Job of Sheet Metal Shop.	06
5.	To Perform a Job of Black Smithy Shop.	04
6.	Introduction and Demonstration of Grinding & Hacksaw Cutting Machine.	
7.	Introduction and Demonstration of Plumbing Shop & Welding Process.	04

Text Book(s):

Title	Author(s)	Publication
Elements of Workshop Technology	Hajra Chaudhary S. K.	Media promoters &
Vol. I	najia Chaudhai y S. K.	Publishers
Workshop Technology Vol. I and II	Raghuvanshi B.S.	Dhanpat Rai & Sons

Reference Book(s):

Title	Author(s)	Publication
Workshop Technology Vol. I	W.A.J. Chapman	Edward Donald Publication
Workshop Practices	H S Bawa	Tata McGraw-Hill
Basic Machine Shop Practice Vol. I, II	Tejwani V. K.	Tata McGraw-Hill

Web Material Link(s):

• http://nptel.ac.in/course.php

Course Evaluation:

Practical:

- Continuous Evaluation Consist of Performance of Practical which will be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 30 Marks.
- Internal Viva consists of 20 Marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME1020	ENGINEERING WORKSHOP
CO 1	Understand the various measuring instruments.
CO 2	Understand the safety norms required in the workshop.
CO 3	Understand the application of various tools required for different operations.
CO 4	Remember the process of manufacture from a given raw material.
CO 5	Explain various manufacturing processes in machine shop.

1: Remember	2: Understand	3: Apply

4: Analyze	5: Evaluate	6: Create
1.111141920	5. Evaluate	o. di cate

Module No	Content	RBT Level
1	Introduction	1, 2, 4
2	Fitting Shop	1, 2, 3
3	Carpentry and Drilling Shop	1, 2, 3
4	Sheet Metal Shop	2, 3, 4
5	Smithy Shop	2, 3, 4
6	Introduction to Machine Tools	2, 3, 4
7	Introduction to Welding & Plumbing	2, 3, 4

Department of Applied Science & Humanities

Course Code: SESH1210 Course Name: Applied Physics

Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ex	aminati	on Scher	ne (Mar	·ks)		
Theory	Theory Practical Tutorial		Practical Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total	
3	2	0	4	40	60	20	30	0	0	150	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- prepare students for career in engineering where physics principles can be applied for the advancement of technology.
- think in core concept of engineering application by studying various topics involved in branch specific application.

	Section I				
Module No.	Content	Hours	Weightage in %		
1.	Quantum Mechanics: Wave-Particle Duality, De-Broglie Matter Wave, Phase and Group Velocity, Heisenberg Uncertainty Principle and its Applications, Wave Function and its Significance, Schrodinger's Wave Equation, Particle in One Dimensional Box	06	15		
2.	Acoustic and Ultrasonic: Introduction, Classification and Characterization of Sound, Absorption Coefficients, Sound Absorbing Materials, Sound Insulation, Ultrasonic, Properties of Ultrasonic, Generation of Ultrasonic Applications of Ultrasonic.	05	10		
3.	Solid State Physics Introduction, Lattice Points and Space Lattice, Unit Cells and Lattice Parameters, Primitive Cell, Crystal Systems. The Bravais Space Lattices. Miller Indices, X-Ray Properties, Diffraction and Bragg's Law, Bragg's X-Ray Spectrum	06	10		
4.	Nanophysics Nanoscale, Surface to Volume Ratio, Surface Effects on Nanomaterials, Quantum Size Effects, Nanomaterials and Nanotechnology, Unusual Properties of Nanomaterials, Synthesis of Nanomaterials, Applications of Nanomaterials	06	15		
	Section II				

Module No.	Content	Hours	Weightage in %
1.	Non-Linear Optics: Laser, Spontaneous and Stimulated Emission of Light, Applications of Laser. Fundamental Ideas about Optical Fibre, Advantages of Optical Fibre of Optical Fibre, Applications of Optical Fibre.	07	12
2.	DC and AC Circuits Fundamentals Introduction of Electrical Current, Voltage, Power and Energy; Sources of Electrical Energy Inductor and Capacitor, Fundamental Laws of Electric Circuits – Ohm's Law and Kirchhoff's Laws; Analysis of Series, Parallel and Series-Parallel Circuits. Alternating Voltages and Currents and their Vector and Time Domain Representations, Average and Rms Values, From Factor, Phase Difference, Power and Power Factor, Purely Resistive Inductive and Capacitive Circuits, R-L, R-C, R-L-C Series Circuits, Impedance and Admittance, Circuits in Parallel, Series and Parallel Resonance.	08	25
3.	Electronics: Semiconductors, Intrinsic and Extrinsic Semiconductor Advantages of Semiconductor Devices, Diodes, Transistors, Types of Bipolar Junction Transistor, Unijunction Junction Transistor, FET and MOSFETS.	07	13

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Volt-Ampere Characteristics of Light Emitting Diode	02
2.	Volt-Ampere Characteristics of Zener Diode	02
3.	To determine value of Planck's constant (h) using a photovoltaic cell	02
4.	To determine the Hall coefficient (R) and carrier concentration of a given	04
	material (Ge) using Hall effect.	
5.	To study the Capacitors in series and parallel DC circuit.	04
6.	To determine velocity of sound in liquid using Ultrasonic Interferometer	04
7.	To study RLC Series circuit.	02
8.	To determine numerical aperture of an optical fiber.	02
9.	Determination of Young's Modulus of given material.	02
10.	Analysis of errors.	02

Text Book(s):

Tene Book(o).				
Title	Author/s	Publication		
Concept of the Modern Physics	A. Beiser	Tata McGraw-Hill Education		
Basic electrical engineering	Kothari and Nagrath	Tata McGraw-Hill Education		
Quantum Mechanics	P.M. Mathew, K. Venkatesan	Tata McGraw-Hill Education		
Waves and Acoustics	Pradipkumar Chakrabarti	New Central Book Agency		
	Satyabrata Chawdhary			
Lasers and Nonlinear Optics	G.D. Baruah	Pragati Prakashan		

Solid State Physics:	S.O. Pillai	New Age Internation Publishers
Basic Electronics:		
Basic Electronics for Scientists	Dennis L. Eggleston	Cambridge University Press
and Engineers		

Web Material Link(s):

• http://nptel.ac.in/course.php

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation Consist of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 20 marks during End Semester Exam.
- Viva/Oral performance of 10 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SESH1210	APPLIED PHYSICS
CO 1	Understand the framework of quantum mechanics and apply the knowledge of basic quantum mechanics to construct one dimensional schrodinger's wave equation.
CO 2	Classify the phenomenon of acoustics and ultrasonic in various engineering field and apply it for various engineering and medical fields. Interpret the concept of nanotechnology and understand the synthesis and applications of nanomaterials from technological prospect.
CO 3	Discover the types and properties of superconductors. relate the behaviour of superconductors at high temperatures.
CO 4	Describe the laser and articulate the idea of optical fiber communications and apply the concepts of lasers and optical fiber communications in every possible sector.
CO 5	Distinguish pure, impure semiconductors and characteristics of semiconductor devices. Thus, will be able to use basic concepts to analyze and design a wide range of semiconductor devices.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Quantum Mechanics	2, 3
2	Acoustic Ultrasonic	1, 3
3	Solid State Physics	2, 4
4	Nanophysics	2, 6
5	Non-Linear Optics	1, 2
6	DC and AC Circuits Fundamentals	2, 3
7	Electronics	3, 6

Course Code: SEHV1010

Course Name: Universal Human Values I

Prerequisite Course (s): -- None

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week)			Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	ory	Prac	ctical	Tut	orial	Total
				CE	ESE	CE	ESE	CE	ESE	
02	00	00	00	100	00	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- become familiar with the ethos and culture of the new surroundings.
- develop bond with peers, seniors, faculty and staff.
- provide an exposure to a holistic vision of life
- develop healthy lifestyle and ethical professional discipline
- connect and appreciate the diversity of cultures.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	 Introduction to UHV I Getting to know each other Aspiration and Concerns 	02	13			
2.	 Self-Management Self-confidence, peer pressure Time management, anger/stress management Personality development, self-improvement Fixing one's goals 	06	25			
3.	Health Health issues Healthy diet Healthy lifestyle Hostel life	02	12			
	Section II					
4.	 Relationships & Society Home sickness Gratitude towards parents, teachers and others Ragging and interaction Competition and cooperation Participation in society 	06	24			

	Natural Environment and Self Evaluation		
	Participation in nature		
5.	Review role of education	04	26
	Need for holistic perspective		
	Sharing and feedback		

Reference Link(s):

- https://www.youtube.com/watch?v=OgdNx0X923I&list=PLYwzG2fd7hzern sVjmtFnuSs Mph4Bi
- https://fdp-si.aicte-india.org/3dayUHV_download.php

Course Evaluation:

Theory:

• Continuous Evaluation consists of 100 marks as per the guidelines provided by Course Coordinator.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEHV1010	UNIVERSAL HUMAN VALUES
CO 1	Understand possibility to reach to their full potential as a human being.
CO 2	Develop holistic perspective of life.
CO 3	Sensitise about the scope of life – individual, family, society and nature.
CO 4	Develop more confidence and commitment to understand, learn and act accordingly.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to UHV 1	1, 2
2	Self Management	1, 2, 3
3	Health	1, 2
4	Relationships & Society	1, 2, 3
5	Natural Environment and Self Evaluation	1, 2, 3

Department of Applied Science and Humanities

Course Code: SESH1080

Course Name: Linear Algebra & Calculus

Prerequisite Course(s): -- Concept upto 12th Standard

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	ıminatio	on Scher	ne (Ma	rks)		
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
3	0	2	5	40	60	0	0	50	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about and work with vector space, linear transformation and inner product space.
- apply concepts of linear algebra for solving science and engineering problems.
- introduce the concept of improper integral and Beta-Gamma Function.
- develop the tool of Fourier series for learning advanced Engineering Mathematics.

	Section I					
Module	Content	Hours	Weightage			
No.	Content	Hours	in %			
	Vector Space					
1	Concept of vector space, Subspace, Linear Combination, Linear	9	20			
1.	Dependence and Independence, Span, Basis and Dimension,	9	20			
	Row Space, Column Space and Null Space, Rank and Nullity.					
	Linear Transformation					
	Introduction of Linear Transformation, Kernal and Range, Rank					
2.	and Nullity, Inverse of Linear Transformation, Rank Nullity	7	15			
	Theorem, Composition of Linear Maps, Matrix associated with					
	linear map.					
	Inner Product Space					
3.	Inner Product, Angle and Orthogonality, Orthogonal projection,	7	15			
	Gram- Schmidt process and QR Decomposition, Least square	/	13			
	decomposition, Change of basis.					

	Section II					
Module	Content	Hours	Weightage			
No.	Content	nours	in %			
	Beta and Gamma function					
1.	Improper Integrals, Convergence, Properties of Beta and	6	14			
	Gamma Function, Duplication Formula (without proof)					
	Fourier Series					
2.	Periodic Function, Euler Formula, Arbitrary Period, Even and	8	18			
	Odd function, Half Range Expansion, Parseval's Theorem					
	Curve tracing					
3.	Tracing of Cartesian Curves, Polar Coordinates, Polar and	8	18			
	Parametric Form of Standard Curves, Areas and Length in Polar	0	10			
	co-ordinates					

List of Tutorial:

Sr. No.	Name of Tutorial	Hours
1.	Vector Space-1	4
2.	Vector Space-2	2
3.	Linear Transformation-1	2
4	Linear Transformation-2	2
5.	Inner Product-1	2
6.	Inner Product-2	2
7.	Beta and Gamma Function-1	2
8.	Beta and Gamma Function-2	2
9.	Curve tracing-1	2
10.	Curve tracing-2	2

Text Book(s):

Title	Author/s	Publicatio n
Thomas' Calculus	George B. Thomas, Maurice D. Weir and Joel Hass	Pearson
Elementary Linear Algebra	Howard Anton and Chrish Rorres	Wiley

Reference Book(s):

Title	Author(s)	Publication
Advanced Engineering Mathematics	E Kreyszig	John Wiley & Sons
A textbook of Engineering Mathematics	N P Bali and Manish Goyal	Laxmi
Higher Engineering Mathematics	B S Grewal	Khanna
Engineering Mathematics for First Year	T Veerarajan	Tata Mc Graw Hill
Engineering Mathematics-1 (Calculus)	H. K. Dass and Dr. Rama	S. Chand
	Verma	

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous evaluation consists of performance of tutorial which will be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SESH1080	LINEAR ALGEBRA & CALCULUS
CO 1	Determine the basis and dimension of vector spaces and subspaces.
CO 2	Discuss the matrix representation of a linear transformation given bases of the relevant
	vector space.
CO 3	Identify the ordinary differentials and partial differentials and solve the maximum and
	minimum value of function.
CO 4	Classify gamma, beta functions & their relation which is helpful to evaluate some definite
	integral arising in various branch of engineering.
CO 5	Construct the graphs for function with intervals and identify more application for
	function.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Vector Space	1, 2, 3, 4
2	Linear Transformation	1, 2, 3, 4
3	Inner Product Space	1, 2, 3, 4
4	Beta and Gamma Function	1, 2, 4, 5
5	Fourier Series	1, 2, 4, 5
6	Curve Tracing	1, 2, 4, 5, 6

Department of Applied sciences & Humanities

Course Code: SESH1240

Course Name: Electrical & Electronics Workshop

Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			aching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	Practical Tutorial	Tutorial Credit		Theor	у	Praction	cal	Tutori	al	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	TOtal
0	2	0	1	0	0	50	0	0	0	50

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify basic fundamental electronic components in circuits.
- learn to use common electronic component on breadboard.
- understand components of instruments, terminology and applications.

List of Practical:

Sr No	Name of Practical	Hours
1	Understanding of electronic component with specification.	2
2	Understanding of Galvanometer, Voltmeter, Ammeter, Wattmeter and	2
	Multimeter	
3	Understanding of breadboard connections	2
4	Drawing and wiring of basic circuits on breadboard	2
5	Verification of Ohm's law	2
6	Half wave, full wave using centre tap transformer and full wave bridge	3
	rectifier	
7	Kirchhoff's laws (KVL,KCL).	3
8	Faraday's laws of Electromagnetic Induction and Electricity Lab	4
9	LDR characteristics	2
10	Study of CRO, measurement of amplitude (voltage) & time period (frequency)	4
11	PCB designing	4

Text Book:

Title	Author/s	Publication
Electronic Principles	Albert Malvino and David J Bates	Mc Graw Hill(7th Edition)

Reference Book:

Title	Author/s	Publication
Electronic Devices	Thomas L. Floyd	Pearson (7th Edition)
Electronic Devices and Circuits	David A. Bell	Oxford Press (5th Edition)
Integrated Electronics	Jacob Millman, Christos	Tata McGraw Hill (2nd Edition)

Course Evaluation:

Practical:

- Continuous Evaluation Consist of Performance of Practical which should be evaluated out of 10 for each practical in the next turn and average of the same will be converted to 20 Marks.
- Internal viva consists of 20 marks.

Course Outcome(s):

• After completion of the course, the students will be able to design elementary combinational and sequential circuits.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SESH1240	ELECTRICAL & ELECTRONICS WORKSHOP
CO 1	Identify the ability to design various electronic circuit on a bread board.
CO 2	Recognize the basic electronic devices and components in a circuit connection.
CO 3	Identify the ability to design a PCB.
CO 4	Define the practical side of basic physics laws.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Electronic Component	1, 2, 3, 4
2	Electronic Device	1, 2, 3, 4
3	Understanding of Brade Board	1, 2, 3, 4, 5, 6
4	Wiring of Bread board	1, 2, 3, 4, 5, 6
5	Ohm's Law	1, 2, 3, 4
6	Rectifier	1, 2, 3, 5, 6
7	KCL and KVL	1, 2, 3, 4, 6
8	LDR	1, 2, 3, 6
9	Electricity Lab	1, 2, 3, 4
10	CRO	1, 2, 4, 5
11	PCD	1, 2, 6

Department of Civil Engineering

Course Code: SECV1040

Course Name: Basics of Civil & Mechanical Engineering

Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Exami	ination S	Scheme	(Marks)			
Theory	eory Practical Tutorial Credit		Tutorial Credit		У	Practi	cal	Tutor	ial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
4	2	0	5	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- study the fundamentals of mechanical systems.
- study and appreciate significance of mechanical engineering in different fields of engineering.
- carry out simple land survey and recent trends in civil engineering.
- understand components of building, building terminology and construction materials.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Civil Engineering: An Overview Introduction, Branches, Scope, Impact, Role of Civil Engineer, Unit of Measurement, Unit Conversion (Length, Area, Volume)	03	04
2.	Introduction to Surveying and Levelling: Introduction, Fundamental Principles, Classification Linear Measurement: Instrument Used, Chaining on Plane Ground, Offset, Ranging Angular Measurement: Instrument Used, Meridian, Bearing, Local Attraction Levelling: Instrument Used, Basic Terminologies, Types of Levelling, Method of Levelling Modern Tools: Introduction to Theodolite, Total Station, GPS	07	12
3.	Building Materials and Construction: Introduction (Types and Properties) to Construction Materials Like Stone, Bricks, Cement, Sand, Aggregates, Concrete, Steel. Classification of Buildings, Types of Loads Acting on Buildings, Building Components and their Functions, Types of Foundation and Importance, Symbols Used in Electrical Layout, Symbols Used for Water Supply, Plumbing and Sanitation	10	14

4.	Construction Equipment: Types of Equipment- Functions, Uses. Hauling Equipment- Truck, Dumper, Trailer. Hoisting Equipment- Pulley, Crane, Jack, Winch, Sheave Block, Fork Truck. Pneumatic Equipment-Compressor. Conveying Equipment- Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE.	04	08
5.	Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material	06	12
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics	04	06
2.	Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non- Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio- Fuels, LPG, CNG, Calorific Value	04	06
3.	Basics of Steam Generators: Introduction, Classification, Cochran, Lancashire and Babcock and Wilcox Boiler, Functioning of Different Mountings and Accessories	LAB	12
4.	Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines	12	14
5.	Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	10	12

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Unit conversation Exercise and Chart preparation of building components	02
2.	Linear measurements	02
3.	Angular measurements	02
4.	Determine R. L of given point by Dumpy level. (Without Change Point)	02
5.	Determine R. L of given point by Dumpy level. (With Change Point)	02
6.	Presentation on various topics as in module about recent trends	04
7.	To understand construction and working of various types of boilers	04
8.	To understand construction and working of mountings	04
9.	To understand construction and working of accessories	04
10.	To understand construction and working 2 –stroke & 4 –stroke Petrol	02
10.	Engines	02
11.	To understand construction and working 2 –stroke & 4 –stroke Diesel	02
11.	Engines	UZ

Text Book(s):

Title	Author(s)	Publication
Elements of Mechanical Engineering	S. B. Mathur,	Dhanpat Rai & Sons
Elements of Mechanical Engineering	S. Domkundwar	Publications
Elements of Mechanical Engineering	Sadhu Singh	S. Chand Publications
Elements of Civil Engineering	Anurag A. Kandya	Charotar Publication
Surveying Vol. I & II	Dr. B. C. Punamia	Laxmi Publication

Reference Book(s):

Title	Author(s)	Publication
Thermal Engineering	R. K. Rajput	Laxmi Publications
Basic Mechanical Engineering	T.S. Rajan	Wiley Eastern Ltd., 1996.
Surveying and Levelling	N. N. Basak	Tata McGraw Hill
Surveying Vol. I	S. K. Duggal	Tata McGraw Hill
Surveying and Levelling	R. Subramanian	Oxford University
Building Construction and	G. S. Birdie and T. D. Ahuja	Dhanpat Rai Publishing
Construction Material		
Engineering Material	S.C. Rangwala	Charotar Publication

Web Material Link(s):

- http://nptel.ac.in/course.php
- http://nptel.ac.in/courses/105107157/
- http://nptel.ac.in/courses/105101087/
- http://nptel.ac.in/courses/105107121/
- http://nptel.ac.in/courses/105104100/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SECV1040	BASICS OF CIVIL & MECHANICAL ENGINEERING
CO 1	Apply the principles of basic mechanical engineering.
CO 2	Comprehend the importance of mechanical engineering equipments like IC engine and
	power transmission elements.
CO 3	Understand different structural loads, components, materials and equipments used in
	the construction of a building.
CO 4	Adapt various methods of area plotting and marking before starting the construction
	activity.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Civil Engineering: An overview	1, 2, 3
2	Introduction to Surveying	1, 2
3	Building Materials and Construction	1, 2
4	Construction Equipment	1, 2
5	Recent Trends in Civil Engineering	1, 2
6	Basics Concept of Thermodynamics	1, 2, 3
7	Fuels and Energy	1, 2, 3
8	Basics of Steam Generators	1, 2
9	Basics of I.C. Engines	1, 2
10	Power Transmission Elements	1, 2

Department of Civil Engineering

Course Code: SECV1080

Course Name: Mechanics of Solids Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)								
Theory	Dragtical Tutowial		atical Tutowial Condit		eory	Prac	ctical	Tut	orial	Total	
Theory	Practical Tu	Tutorial	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
4	2	0	5	40	60	20	30	0	0	150	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand different types of forces, systematic evaluation of effect of these forces, behavior of rigid and deformable bodies subjected to various types of forces at the state of rest or motion of the particles.
- understand the stresses developed under the application of force.
- understand the physical and mechanical properties of materials.
- understand behavior of structural element under the influence of various loads.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Introduction: Definition of Rigid Body, Deformable Body, Scalar and Vector Quantities, Fundamental Principles of Mechanics: Principle of Transmissibility, Principle of Superposition, Law of Parallelogram of Forces.	3	6					
2.	Fundamental of Static: Force, Types of Forces, Characteristics of a Force, System of Forces, Composition and Resolution of Forces. Concurrent Forces: Resultant of Coplanar Concurrent Force System by Analytical Method, Law of Triangle of Forces, Law of Polygon of Forces, Equilibrium Conditions for Coplanar Concurrent Forces. Non-Concurrent Forces: Moments & Couples, Characteristics of Moment And Couple, Varignon's Theorem, Resultant of Non-Concurrent Forces by Analytical Method, Equilibrium Conditions of Coplanar Non-Concurrent Force System.	10	22					
3.	Centroid and Centre of Gravity: Centroid of Lines, Plane Areas and Volumes, Examples Related to Centroid of Composite Geometry, Pappus –Guldinus Theorems.	5	11					

	Moment of Inertia:						
4.	Parallel and Perpendicular Axis Theorems, Polar Moment of	5	11				
7.	Inertia, Radius of Gyration of Areas, Examples related to	3	11				
	moment of Inertia of Composite geometry.						
	Section II						
Module	Combons	11	Weightage				
No.	Content	Hours	in %				
	Mechanical Properties of Materials:						
	Introduction, Classification of Materials, Properties Related to						
1.	Axial, Bending, and Torsional & Shear Loading, Toughness,	2*	5				
	Hardness, Ductility, Brittleness. Proof stress, Factor of Safety,						
	Working Stress, Load Factor.						
	Simple Stress and Strain:						
	Definition of Stress and Strain, Tensile & Compressive						
	Stresses: Shear and Complementary Shear Strains, Linear,						
2.	Shear, Lateral, Thermal and Volumetric. Hooke's Law, Stresses	10	21				
	and Strain in bars of Varying, Tapering & Composite Section,						
	Principle of Superposition. Elastic Constant, Relation between						
	Elastic Constants.						
	Shear Force and Bending Moment:						
	Introduction, Types of Loads, Supports and Beams, Shear						
	Force, Bending Moment, Sign Conventions for Shear Force &						
3.	Bending Moment. Statically Determinate Beam, Support	12	24				
	Reactions, SFD and BMD for Concentrated Load and Uniformly						
	Distributed Load, Uniformly Varying Load, Point of Contra-						
	flexure.						

^{*(}To be covered during lab hours)

List of Practical (Any Ten):

Sr. No	Name of Practical	Hours
1.	Equilibrium of coplanar concurrent forces	02
2.	To verify the law of parallelogram of forces	02
3.	To verify the law of polygon of forces	02
4.	To verify the Lami's theorem	02
5.	Equilibrium of parallel force system – simply supported beam	02
6.	Tensile test on Ductile materials.	02
7.	Compression test on Ductile materials	02
8.	Compression test on Brittle Materials	02
9.	Determination of hardness of metals (Brinell/ Rockwell hardness test)	02
10.	Determination of impact of metals (Izod/ Charpy impact test)	02
11.	Tutorial on concurrent & Non-concurrent forces	04
12.	Tutorials on C. G & MI	02
13.	Tutorials on SFD & BMD	04

Text Book(s):

Title	Author(s)	Publication
Applied Mechanics	S. B. Junnarkar & H. J. Charotar Publication	
	Shah	
Strength of Materials (SI Units)	R S Khurmi, N Khurmi	S. Chand & Company Pvt. Ltd.

Reference Book(s):

Title	Author(s)	Publication
Engineering Mechanics,	Meriam and Karaige,	Wiley-India
Engineering Mechanics: Statics	S Rajsekaran	Vikas Publication
and Dynamics		
Engineering Mechanics of Solids	Popov E.P	Prentice Hall of India
Strength of Materials (SI Units)	Er. R . K. Rajput	S. Chand & Company Pvt. Ltd.
Mechanics of Structure-Vol.I	Dr. H.J. Shah & S. B.	Charotar Publishing House
	Junarkar	Pvt. Ltd.
Strength of materials	R. Subramanian	Oxford Publications
Strength of materials	S. Ramamrutham	DhanpatRai Publishing
Strength of Materials (SI Units)	Er. R . K. Rajput	S. Chand & Company Pvt. Ltd.

Web Material Link(s):

- http://nptel.ac.in/courses/122104014/
- http://nptel.ac.in/courses/112103108/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SECV1080	MECHANICS OF SOLIDS
CO 1	Conceptualization of the basic principles of dynamics, equilibrium, static reactions, and
	internal forces in statically determined beams.
CO 2	Application of principles of statics to determine c.g and m.i of a different geometrical
	shape.
CO 3	Problem formulation of mechanical elements and analyze the deformation behavior for
	different types of loads.
CO 4	Understand the different types of stresses and strains developed in the member
	subjected to axial, bending, shear & torsional effects.
CO5	Generalize the physical properties of materials.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1, 2
2	Fundamental of Static	2, 3, 4
3	Centroid and Centre of Gravity	2, 4, 5
4	Moment of Inertia	3, 4, 5

	5	Mechanical Properties of Materials	1, 2, 5, 6
	6	Simple Stress and Strain	2, 4, 5
Γ	7	Shear Force and Bending Moment	3. 4. 5. 6

Department of Computer Engineering

Course Code: SECE1010

Course Name: Basics of Computer & Programming

Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/ Week) Examination Scheme (Marks)				Teaching Scheme (Hours/ Week)							
	Theory	Practical	Tutorial	Credit -	Theory		Practical		Tut	orial	Total
					CE	ESE	CE	ESE	CE	ESE	Total
	3	2	0	4	40	60	20	30	0	0	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• understand basic components of computer system.

• identify appropriate approach to computational problems.

• develop logic building and problem solving skill.

Section I						
Modul	Content	Hour	Weightag			
e No.	Content	S	e in %			
	Introduction to Computer and its Architecture:					
	Introduction and Characteristics, Generation, Classification,					
1.	Applications, Central Processing Unit, Communication between	03	10			
	Various Units, Processor Speed, Various Input and Output					
	Devices.					
	Memory and Operating Systems:					
	Introduction to Memory, Memory Hierarchy, Primary Memory					
	and its Type, Secondary Memory, Classification of Secondary	0.6	15			
2.	Memory, Various Secondary Storage Devices and their	06				
	Functioning, their Merits and Demerits, Evolution of Operating					
	System, Types and Functions of Operating Systems,					
	Recent Advances in Computer:					
	Introduction to Emerging Areas like Artificial Intelligence, IoT	٥٢	10			
3.	tools, Data Science, Sensors, 3D Printing, Automization in the	05	10			
	field of Civil, Mechanical and Chemical.					
	Computer Programming Language:					
	Introduction to different types of Programming Languages,					
4.	Flowcharts and Algorithms. Introduction to C Programming	08	15			
1.	Language, Features of C, Structure of C Program, Development		10			
	of Program, Types of Errors, Debugging and Tracing Execution					
	of Program.					
76.13	Section II					
Modul	Content	Hour	Weightag			
e No.	Constants, Variables and data Types:	05	e in % 10			
1.	constants, variables and data Types:	US	10			

	Character Set, C tokens, Keyword, Constants and Variables, Data Types - Declaration and Initialization, User define type Declarations Typedef, Enum, Basic Input and Output Operations, Symbolic Constants		
2.	Operators and Expression and Managing I/O operations: Introduction to Operators and its Types, Evaluation of Expressions, Precedence of Arithmetic Operators, Type Conversions in Expressions, Operator Precedence and Associativity. Managing Input and Output, Reading a Character, Writing a Character, Formatted Input, Formatted Output.	07	16
3.	Conditional statement and branching: Decision Making & Branching: Decision Making with If & If Else Statements, If - Else Statements (Nested Ladder), The Switch & go - to Statements, The Ternary (?:) Operator Looping: The While Statement, The Break Statement & The Do. While Loop, The FOR Loop, Jump Within Loops - Programs.	06	12
4.	Arrays and Strings: Introduction to Array, One Dimensional Array, Two Dimensional Arrays, Declaring and Initializing String Variables, Arithmetic Operations on Characters, Putting Strings Together, Comparison of Two Strings, Basic String Handling Functions	05	12

List of Practical:

Sr. No	Name of Practical		
		S	
1.	Introduction to Basic Command	04	
2.	Word Processing, Spreadsheets and Presentation Exercises	06	
3.	Introduction to Octave Environment	04	
4.	Implementation in C for conditional statement and branching	06	
	Implementation of if, ifelse, nested ifelse and switch statements		
	Implementation of while loop, dowhile loop and for loop		
5.	Implementation of 1-D and 2-D array	06	
6.	Implementation of in built string functions, application programs of array	04	
	and strings		

[#] Use of different libraries will be covered in Practical Assignments.

Text Book(s):

Title	Author(s)	Publication			
Programming in ANSI C	E. Balagurusamy	Tata McGraw Hill			
Introduction to Computer Science	ITL Education Solutions	Pearson Education			
	Limited				

Reference Book(s):

Title	Author(s)	Publication
Programming in C	Ashok Kamthane	Pearson
Let Us C	Yashavant P. Kanetkar	Tata McGraw Hill
Introduction to C Programming	Reema Thareja	Oxford Higher Education
Programming with C	Byron Gottfried	Tata McGraw Hill

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of the performance of practical, which will be evaluated out of 10 per each practical. At the end of the semester, the average of the entire practical will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/test consists of 15 marks during End Semester Examination.
- Viva/Oral performance consists of 15 marks during End Semester Examination.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SECE1010	BASICS OF COMPUTER & PROGRAMMING
CO 1	Observe the different types of operating systems and its functionalities.
CO 2	Explore new emerging area in computer field.
CO 3	Apply basic principles of imperative and structural programming to solve complex
	problems.
CO 4	Classify the types of errors occur while running the program.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Computer and its Architecture	1, 2, 4
2	Memory and Operating systems	1, 2, 3
3	Recent Advances in Computer	2, 4, 5
4	Computer Programming Language	1, 2, 3, 4
5	Constants, Variables and Data Types	1, 2, 3
6	Operators and Expression in Managing I/O operations	2, 3, 6
7	Conditional statement and branching	2, 4, 5
8	Arrays and Strings	1, 2, 3, 6

SECOND YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. MECHANICAL PROGRAMME AY:2021-22

				Teaching Scheme						Examination Scheme					
Sem	Course	Course Title	Offered	Contact Hours					Theory		Practical		Tutorial		
Sein	Code		Ву	Theory	Practical	Tutorial	Total	Credit	CE	ES E	CE	ESE	CE	ESE	Total
	SEME2011	Engineering Thermodynamics	SH	3	0	0	3	3	40	60	0	0	0	0	100
	SEME2020	Material Science & Metallurgy	ME	3	2	0	5	4	40	60	20	30	0	0	150
	SEME2041	Machine Drawing	ME	0	4	0	4	2	0	0	100	0	0	0	100
	SEME2110	Casting and Joining Processes	CV	3	2	0	5	4	40	60	20	30	0	0	150
3	SESH2011	Differential Equations	ME	3	0	2	5	5	40	60	0	0	0	0	100
3	SECV2102	Advanced Solid Mechanics	ME	3	2	0	5	4	40	60	20	30	0	0	150
	CFLS1020	Global Communication Skills	CFLS	2	0	0	2	2	40	60	0	0	0	0	100
	SEME2910	Industrial Exposure	ME		2		0	2	0	0	100	0	0	0	100
						Total	29	26							950
	SESH2022	Numerical & Statistical Analysis	SH	3	0	2	5	5	40	60	0	0	50	0	150
	SEME2050	Forming & Machining Processes	ME	3	2	0	5	4	40	60	20	30	0	0	150
	SEME2060	Fluid Mechanics	ME	3	2	0	5	4	40	60	20	30	0	0	150
	SEME2070	Mechanical Measurement & Metrology	ME	3	2	0	5	4	40	60	20	30	0	0	150
4	SEME2081	Kinematics of Machinery	ME	4	0	0	4	4	40	60	0	0	0	0	100
	SEME2090	Software Tools for Mechanical ME Engineers		0	2	0	2	1	0	0	50	0	0	0	50
	CFLS3010	Foreign Language-I	CFLS	2	0	0	2	2	40	60	0	0	0	0	100
	SEPD3040	Integrated Personality Development Course-I	SEPD	2			2	1	10 0	0	0	0	0	0	100
						Total	30	25							950

Department of Mechanical Engineering

Course Code: SEME2011

Course Name: Engineering Thermodynamics

Prerequisite Course(s): SEME1030-Elements of Mechanical Engineering

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)						Exa	minati	on Schei	me (Ma	rks)	
	Theory	normal Deposition Tutorial Con		Practical Tutorial Credit		al Tutorial Credit Theory Practical		ctical	Tutorial		Total
	Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify different aspects of thermodynamics and their application.
- interpret different laws of thermodynamics and their application to field and daily life.
- understand various gas laws and equations of state and their application.
- understand the role of entropy, exergy to the universe.

Section I									
Module No.	Content	Hours	Weightage in %						
1.	Basic Concepts of Thermodynamic Classical and statistical thermodynamic approach, Thermodynamic: system, properties, states, processes, cycle & equilibrium, Concepts of: control volume and control surface, Specific heat capacity, Internal Energy, Enthalpy, Specific Volume, heat and work.	05	07						
2.	First and Second law of Thermodynamics First law for a closed system undergoing a cycle and change of state, energy, PMM1, First law of thermodynamics for a nonflow and flow process. Limitations of first law of thermodynamics, Statements of second law of thermodynamics and their equivalence, PMM2, Carnot's theorem, Corollary of Carnot's theorem, Causes of irreversibility.	08	20						
3.	Entropy Clausius theorem, property of entropy, Clausius inequality, entropy change in an irreversible process, principle of increase of entropy, entropy change for non-flow and flow processes, third law of thermodynamics, PPM3, Entropy change for phase changing process.	05	15						

4.	Exergy Energy of a heat input in a cycle, exergy destruction in heat transfer process, exergy of finite heat capacity body, exergy of closed and steady flow system, irreversibility and Gouy-Stodola theorem and its applications, second law efficiency.	05	08
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Vapour Power Cycles Carnot vapor cycle, Rankine cycle, comparison of Carnot and Rankine cycle, carnot cycle efficiency, variables affecting efficiency of Rankine cycle.	06	15
2.	Gas Power Cycles Carnot, Otto and Diesel cycle, Dual cycle, Comparison of Otto, Diesel and Dual cycles, air standard efficiency, mean effective pressure, brake thermal efficiency, relative efficiency, Brayton cycle.	06	15
3.	Properties of gases and gas mixtures Avogadro's law, equation of state, ideal gas equation, Vander Waal's equation, reduced properties, law of corresponding states, compressibility chart, Gibbs-Dalton law, internal energy; enthalpy and specific heat of a gas mixtures.	06	12
4.	Refrigeration and Liquefaction Carnot refrigeration cycle, air refrigeration cycle, absorption refrigeration, choice of refrigeration,	04	08

Text Book (s):

Title	Author/s	Publication
Engineering Thermodynamics	P.K. Nag	McGraw-Hill Education

Reference Book(s):

Title	Author/s	Publication
Fundamentals of Thermodynamics	Borgnakke & Sonntag	Wiley India (P) Ltd.
Thermodynamics - An Engineering	Yunus Cengel & Boles	McGraw-Hill Education
Approach		
Engineering Thermodynamics	Gordon Rogers & Yon	Pearson Education Ltd.
	Mayhew	
Engineering Thermodynamics	Jones and Dugan,	PHI Learning Pvt. Ltd

Web Material Links:

• http://nptel.ac.in/courses/112105123/1

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Tutorial:

- Circuits and charts for gas & vapour power cycle consists of 10 marks.
- Internal Viva consists of 10 marks.
- Viva/Oral performance consists of 30 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

	r O
SEME2011	ENGINEERING THERMODYNAMICS
CO 1	Interpret basic terminologies of thermodynamics.
CO 2	Define and demonstrate the laws of thermodynamics and its application in routine
	life.
CO 3	Interpret the concept of entropy and exergy.
CO 4	Analyze different gas and vapour power cycles and its applications to the diff.
	power plants.
CO 5	Identify different laws and its application related to gases and its mixtures.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Basic Concepts of Thermodynamic	1, 2
2	First and Second law of Thermodynamics	1, 2, 3
3	Entropy	1, 2, 3
4	Exergy	1, 2, 3
5	Vapour Power Cycles	2, 5
6	Gas Power Cycles	2, 5
7	Properties of gases and gas mixture	1, 2, 3
8	Refrigeration and Liquefaction	2, 3, 5

Department of Mechanical Engineering

Course Code: SEME2020

Course Name: Material Science & Metallurgy

Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minati	on Schei	me (Ma	rks)		
Theory Practical Tutorial		eory Practical Tutorial Credit	The	eory	Prac	ctical	Tut	orial	Total	
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify the different materials and their properties described.
- understand the microstructures, crystallography, defects, and phase diagrams of different materials.
- understand the process involved in mechanical testing of materials and their deformation under certain conditions.
- understand the role of heat treatment to achieve desired variation in properties of materials.

	Section I					
Module	Content	Hours	Weightage			
No.	Content	nours	in %			
1.	Introduction to Materials Classification of Engineering Materials, Engineering requirements of materials, Methods/Tools to reveal the different levels of structure. Defects-Point, Line, Planar; Crystal geometry and Crystal Imperfections: Unit Cell, Crystal structure, Bravise lattice, atomic packing, coordination number, crystal structures of metallic elements, crystal directions and planes, Miller indices, Polymorphism or Allotropy. Crystal structure and correlated properties. diffusion processes, Mechanism of crystallization – nucleation and growth, factors	06	12			
	influencing nucleation and growth, Imperfections in					

	crystals and their effect on properties, Solute strengthening, Corrosion.		
	strengthening, corrosion.		
	DI DI IN IN C		
	Phase Diagrams and Phase Transformation Phase, Gibbs's Phase rule, Solubility and Solid Solutions,		
	Iso-morphous alloy system, Eutectoid and Peritectic		
2.	system, Evolution of Microstructure, Phase	06	10
2.	Transformation-Temperature-Time-Transformation		10
	(TTT) and Continuous Cooling Transformation (CCT)		
	Diagrams, Electro Microscopy.		
	Solidification of Metals		
	Solidification of metals and an alloy, Nucleation and		
	Growth during freezing of pure metal and alloy ingot/a		
3.	casting Resultant macrostructures; Effects of Structure on Mechanical Properties, Methods to control the grain	05	10
	structure resulting from solidification, Solidification		
	defects like porosity and shrinkage and remedies. Cooling		
	curve of pure metal and alloy.		
	Heat Treatment		
	Annealing and its types, Normalizing, Aus-tempering,		
	Mar-tempering, Quenching and Temper heat treatment,		
4.	Hardenability, Applications of above processes for the industrial practices.	05	13
4.	Surface hardening processes	03	15
	Flame and induction hardening, Carburizing, Nitriding		
	and Carbonitriding, Applications of above processes for		
	the industrial practices.		
	Powder Metallurgy		
5.	Application and advantages, Production of powder,	Laboratory	05
	Compacting, Sintering, Equipment and process capability.		
	Section II		
Module	Content	Hours	Weightage
No.		110013	in %
	Cast Iron and Alloy steel		
	Iron-Iron Carbide and Iron-carbon diagrams,		
	Transformations resulting into White Cast Iron, Grey Cast		
	Iron, Malleable Cast Iron, S. G. Iron, Alloy Cast Iron. Their		
	microstructures and correlated properties and	00	20
1.	applications, IS Codification, Purpose of alloying, General	09	20
	effect of alloying elements on ferrite, carbide,		
	transformation temperature, hardenability and		
	tempering. Types of steel: Chromium, Manganese,		
	Molybdenum and Manganese steels, IS Codification, Tool Steels Classification, properties, applications and IS and		
	occio ciassificación, propercies, applicacións and 15 and		

	ISO Codification.		
2.	Non-Ferrous Alloys Non-Ferrous Alloys of Aluminium, Magnesium, Copper, Nickel, Titanium, Microstructure and mechanical property relationships; Composite, Classification, Processing, Metal Matrix	Laboratory	05
3.	Mechanical Behavior of Metals Properties of metals, Deformation of metals, Mechanisms of deformation, Deformation in polycrystalline materials, Mechanical testing of materials (destructive & nondestructive) testing methods.	07	15
4.	Polymers, Ceramics and Composites Definition, Classification & characteristics of polymers, Types of polymerization, Polymer processing, polymer matrix, properties and applications Elastomers, Properties of ceramic materials, Cermets, Ceramic Matrix, Ceramics, Alumina, Zirconia, Silicon Carbide, Sialons, Reaction Bonded Silicon Nitride, Processing Composite materials, Fiber reinforced plastic (FRP), Glasses properties and applications.	07	10

Sr. No.	Name of Practical	Hours
1.	To understand construction and working of metallographic microscope.	02
2.	To study procedure of specimen preparation for microscopic examination and to carry out a specimen preparation.	04
3.	To understand what is micro examination, importance of micro examination and to study various ferrous, non-ferrous microstructures.	04
4.	To show the effect of different quenching media like Oil, Water and Brine on the hardness of medium carbon steel.	04
5.	To find out the effect of varying section size on hardenability of steel and obtain hardness distribution curves of hardened steel cross-section.	04
6.	To determine machine defects by dye -penetrant test and magnetic particle test.	04
7.	To determine the hardenability by Jominy end quench test.	04
8.	Study of different heat treatment processes- annealing, normalizing, hardening and tempering, surface and casehardening to improve properties of steel during processes and applications with the help of muffle furnace.	04

Text Book(s):

Title	Author/s	Publication
Callister's Material Science and Engineering	R. Balasubramaniam	Wiley India

Reference Book(s):

Title	Author/s	Publication
Materials Science and Metallurgy	O. P. khanna	Dhanpatrai
Materials Science and Metanurgy	U. F. Kilalilla	Publication
Principles of Materials Science and	W F Smith	McGraw Hill

Engineering		
Elements of Material Science and Engineering	Lawrence H. Van Vlack,	Pearson Education

Web Material Links:

http://nptel.ac.in/downloads/113106032/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of solution of Practical which will be evaluated out of 10 for each and average of the same will be converted to 10 Marks.
- Internal Viva component of 10 Marks.
- Performance/Problem solution/quiz/test of 15 Marks during End Semester Exam.
- Viva/Oral performance of 15 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2020	MATERIAL SCIENCE & METALLURGY
CO1	Understand the basic concept of material science and metallurgy.
CO2	Know about the ferrous and non ferrous metals and alloys and their applications.
CO3	Understand and apply various heat treatment process to get desired material properties.
CO4	Examine the mechanical properties of metals through various destructive and non destructive methods.
CO5	Understand the importance of powder metallurgy & judge the scope and limitations of different materials.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Materials	1
2	Phase diagrams and phase transformation	1, 2, 4
3	Solidification of Metals	2, 4
4	Heat Treatment, Surface hardening process	3, 5
5	Powder Metallurgy	2, 5
6	Cast Iron and Alloy Steel	1, 2
7	Non Ferrous Alloys	1, 2
8	Mechanical Behaviour of Metals	2, 3, 5
9	Polymers, Ceramics and Composites	2, 4

Department of Mechanical Engineering

Course Code: SEME2101 Course Name: Machine Drawing

Prerequisite Course(s): SEME1010 - Engineering Graphics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minati	on Schei	me (Ma	rks)		
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Fractical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total
00	04	00	02	00	00	100	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the industrial drawing.
- learn a machining and welding symbols.
- know the part and assembly drawings.
- know an application of screw threads, screw fasteners, welding and riveted joints.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Machining Symbols and Surface Roughness Symbols used for machining processes, Symbols used for indication of surface roughness		05
2.	Limit, Fits and Tolerances Tolerance, Limits, Allowance, Basic Size, Design Size, Actual Size, Unilateral and Bilateral Tolerance and its representation, Fits and its types(Clearance, Transition and Interference), Introduction of Hole Basic and Shaft Basic Method	1	05
3.	Screw Threads Forms of screw threads, Representation of external and internal thread, Unified thread, Whitworth thread, Seller thread, British Association thread, Square thread, Acmethread, Knuckle thread, Buttress thread, Right and left hand Threads		15
4.	Screwed Fastening Types of Nuts (Hexagonal, Square, Flanged, Cap, Dome, Capstan, Ring and Wing), Types of Bolt (Hexagonal, Square,		15

	Cylindrical, Cup headed, Countersunk headed, Hook, Headless		
	tapered, Eye bolt, Lifting bolt, Stud bolt)		
5.	Keys, Cotter and Pin Joint Key and keyways, Types of Keys (Taper Key, Saddle Key, Round or Pin Key, Gib Head Key, Feather or Parallel Key, Woodruff Key), Cotter and Cotter Joint, Pin Joint or Knuckle		10
	Joint		
	Section II		
Module	Content	Hours	Weightage in %
1.	Riveted Joints, Bolted Joints, Welding Joints and Welding Symbols Riveted Joint, Forms of riveted head (Cup, Pan, Conical, Countersunk, Rounded Countersunk and Ellipsoid), Riveted Lap and Butt Joints, Welding Joints and Symbols (Lap, Butt, Tee, Corner or Edge)		15
2.	Drafting Software Introduction of Software, Part Drafting Exercise (2D as well as 3D)		35

Sr	Name of Practical	Hours
No		
1.	Sheet of Machining Symbols and Surface Textures	03
2.	Sheet of Types of Screw Threads	03
3.	Drafting Exercise of Types of Nuts and Bolts	05
4.	Sheet of Types of Keys, Cotter and Knuckle Joint	04
5.	Sheet of Types of Riveted Joints, Welding Joints and Welding Symbols	02
6.	Sheet of Plummer Block or Pedestal Bearing	02
7.	Drafting Exercise of Part in Drafting software	14
8.	Parts designing using software tools	12
9.	Study of force analysis using software	15

Text Book(s):

Title	Author/s	Publication
Machine	N. D. Bhatt, V. M. Panchal	Charotar Publishing House Pvt.
Drawing	N. D. Bilatt, V. M. Palicilal	Ltd.
Machine	N. Sidheshwar, P. Kannaiah, V. V. S.	Tata McGraw Hill Publication
Drawing	Sastry	Tata McGraw Hill Fublication

Web Material Links:

• http://nptel.ac.in/syllabus/112106075/

Course Evaluation:

Practical:

- Continuous Evaluation consists of performance of practical and noted the same in manual and record book which will be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal Viva consists of 30 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2101	MACHINE DRAWING	
CO1	Illuminate machining and welding symbols and its representation in the	
	industrial drawings.	
CO2	Interpret and differentiate part and assembly drawing.	
CO3	Explore various types of screw threads, screw fasteners, welding, riveted and pin	
	joints and its applications.	
CO4	Understand limit, fits and tolerance systems and its representation in drawings.	
CO5	Discover the drafting software to create 2D and 3D geometry.	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Machining Symbols and Surface Roughness	1, 2
2	Limit, Fits and Tolerances	1, 2, 3
3	Screw Threads	1, 2, 5
4	Screwed Fastening	1, 2, 5
5	Keys, Cotter and Pin Joint	2, 4, 5
6	Riveted Joints, Bolted Joints, Welding Joints and Welding	2, 4, 5
	Symbols	
7	Drafting Software	1, 2, 5, 6

Department of Mechanical Engineering

Course Code: SEME2110

Course Name: Casting & Joining Process

Prerequisite Course(s): -- SEME1020 - Engineering Workshop

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)								
Theory	The court Due at it as	ractical Tutorial	arial Cradit	Theory		Prac	ctical Tutor		orial	Total		
Theory	Fractical		Tutoriai	ai Tutoriai	Tutoriai Credit	Credit	CE	ESE	CE	ESE	CE	ESE
03	02	00	04	40	60	20	30	00	00	150		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand various manufacturing techniques.
- learn the background for higher level subjects in engineering like Production Technology.
- understand the relevance and importance of the Different manufacturing techniques and real-life application in industry.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Manufacturing Processes Basic Introduction, Economics and Technological Definition, Importance of Manufacturing, Classification and Selection of Manufacturing Processes.	02	05				
2.	Patternmaking and Foundry Patterns, Allowances, Types of patterns, Moulding materials, Moulding sands; properties and sand testing: Grain fineness, moisture content, clay content and permeability test. Core materials and core making, Gating & Riser systems, Spure, Gating, Ration, Cupola, Inspection and Cleaning of casting, Casting defects.	12	25%				
3.	Miscellaneous Casting Process Shell moulding, Die casting, investment Casting, Carbon dioxide molding process, Centrifugal casting, Slush casting, Continuous casting process, Advanced technologies in casting.	08	20%				

	Section II		
Module	Content	Hours	Weightage in %
1.	Gas Welding Principles of gas welding, Types of gases used, Types of flames, Welding techniques, Edge preparation, Equipment used, Torch, Regulators, Welding filler rods, Gas cutting, Principles of gas cutting, Position of torch, Soldering, Brazing, Adhesive bonding.	08	18%
2.	Electric Arc Welding Principles of electric arc welding, A.C. / D.C. welding, Edge preparation, Equipment used, ISI electrode classification: Designation and selection, Manual metal arc welding, Carbon arc welding, Inert gas shielded arc welding, TIG & MIG, Submerged arc welding, Atomic hydrogen arc welding, Plasma arc welding, Stud arc welding, Arc cutting.	08	18%
3.	Resistance Welding Principles of resistance welding, Heat balance, Electrodes, Spot welding, Seam welding, Projection welding, Upset welding, Flash welding, Fusion welding processes: Thermit welding, electro-slag welding, Electron beam and laser beam welding.	07	14%

Sr	Name of Practical	Hours				
No						
1.	Study of different types of patterns & types of molding methods	02				
2.	Design of Gating system & Design of Riser	02				
3.	To Find out the Moisture Content, Permeability and Hardness of Moulding					
3.	Sand					
4.	Casting Defects, their Causes and Remedies	02				
5.	Tutorial on Casting Simulation	04				
6.	Study different Welding Processes, Weld Joint Design as per I.S. code and	04				
0.	Weld Symbols	04				
7.	Gas Welding and Gas Cutting Processes	04				
8.	MIG & TIG Welding Process	04				
9.	Resistance Welding Process	04				

Text Book(s):

Title	Author/s	Publication
Manufacturing Technology Vol. II	P.N. Rao	Tata McGraw Hill
A Textbook of Production Technology	Sharma P. C.	S. Chand

Reference Book(s):

Title	Author/s	Publication
Manufacturing Technology – I	Rao	Tata McGraw Hill
A Textbook of Production Engineering	Sharma P.C.	S. Chand
Manufacturing Processes and Systems	Phillip F., Ostwald, Jairo	Wiley India
Manufacturing i rocesses and systems	Munoz	whiey mula
Elements of Workshop Technology V. II	Chaudhary	MPP
Manufacturing technology	Rao	Atul
Work shop Technology -1	Hajra	MPP

Web Material Links:

https://nptel.ac.in/courses/112107145

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 for each practical and average of the same will be converted to 10 marks.
- Internal Viva component of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2110	CASTING AND JOINING PROCESS					
CO1	Articulate basic knowledge of manufacturing processes to implement in professional skills.					
	professional skins.					
CO2	escribe patternmaking process and casting defects					
CO3	Differentiate various casting processes for good manufacturing practices.					
CO4	Demonstrate gas welding and cutting process for different application					
CO 5	Identify, classify and apply arc & resistance welding processes used for various					
	applications in industrial practice.					

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Manufacturing Processes	1, 2, 4, 6
2	Patternmaking and Foundry	1, 2, 5, 6
3	Miscellaneous Casting Process	1, 2, 6
4	Gas Welding	1, 2, 5

5	Electric Arc Welding	2, 5, 6
6	Resistance Welding	2, 5, 6

Department of Science & Humanities

Course Code: SESH2011

Course Name: Differential Equations

Prerequisite Course(s): SESH1010-Elementary Mathematics for Engineers

Teaching & Examination Scheme:

Teacl	Teaching Scheme (Hours/Week)			Examination Scheme (Marks)								
Theory	Practical	Tutorial	Credit	Credit Theory	eory Practical		Tute	Tutorial				
Theory	r actical Tutorial	Tutoriai	ii Tutoriai	Credit	lai Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	02	05	40	60	00	00	50	00	150		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn orientation of calculus and its applications in solving engineering problems involving differential equations.
- understand the introduction of partial differential equations with methods of its solutions.
- learn the application of Laplace transforms to solve linear differential equations.
- understand the introduction of periodic functions and Fourier series with their applications for solving ODEs.

Section I					
Module	Content	Hours	Weightage		
No.	Content		in %		
	Ordinary Differential Equation				
	First order ODEs, Formation of differential equations, Solution				
	of differential equation, Solution of equations in separable				
	form, Exact first order ODEs, Linear first order ODEs, Bernoulli				
1.	Equation, ODEs of Second and Higher order, Homogeneous	10	20		
	linear ODEs, Linear Dependence and Independence of				
	Solutions, Homogeneous linear ODEs with constant				
	coefficients, Differential Operators Nonhomogeneous ODEs,				
	Undetermined Coefficients, Variation of Parameters				
	Partial Differential Equation				
	Formation of First and Second order equations, Solution of				
2.	First order equations, Linear and Non-liner equations of first,	7	18		
	Higher order equations with constant coefficients,				
	Complementary function, Particular Integrals.				
3.	Applications of ODE and PDE	5	12		

	Orthogonal trajectories, Method of Separation of Variables,		
	D'Albert's solution of wave equation, Solution of heat equation.		
	Section II		
Module	Content	Hours	Weightage
No.	Content	110015	in %
	Laplace Transform		
	Laplace Transform, Linearity, First Shifting Theorem, Existence		
	Theorem, Transforms of Derivatives and Integrals, Unit Step Function, Second Shifting Theorem, Dirac's Delta function,		
1.	Laplace Transformation of Periodic function, Inverse Laplace	10	20
	transform, Convolution, Integral Equations, Differentiation and		
	Integrations of Transforms, Application to System of		
	Differential Equation.		
	Fourier Series		
2.	Periodic function, Euler Formula, Arbitrary Period, Even and	7	15
	Odd function, Half-Range Expansions, Applications to ODEs.		
3.	Fourier Integral and Transformation		
	Representation by Fourier Integral, Fourier Cosine Integral,	6	15
	Fourier Sine Integral, Fourier Cosine Transform and Sine	0	15
	Transform, Linearity, Fourier Transform of Derivatives.		

List of Tutorials:

Sr No	Name of Tutorial	Hours
1.	Ordinary Differential Equation-1	2
2.	Ordinary Differential Equation-2	2
3.	Ordinary Differential Equation-3	4
4.	Partial Differential Equation-1	2
5.	Partial Differential Equation-2	4
6.	Applications of ODE and PDE	2
7.	Laplace Transform-1	2
8.	Laplace Transform-2	2
9.	Laplace Transform-3	4
10.	Fourier Series-1	2
11.	Fourier Series-2	2
12.	Fourier Integral and Transformation	2

Text Book(s):

Title	Author/s	Publication
Advanced Engineering Mathematics	Erwin Kreyszig	Wiley India Pvt. Ltd.

Reference Book(s):

Title	Author/s	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers
Advanced Engineering Mathematics	R. K. Jain, S.R.K. Iyengar	Narosa Publishing House Pvt. Ltd.
		rvi. Liu.

Differential Equations for Dummies	Steven Holzner	Wiley India Pvt. Ltd.
Higher Engineering Mathematics	H.K. Dass, Er. Rajnish	S. Chand & Company Pvt.
	Verma	Ltd.

Web Material Links:

- http://nptel.ac.in/courses/111105035/
- http://nptel.ac.in/courses/111106100/
- http://nptel.ac.in/courses/111105093/
- http://nptel.ac.in/courses/111108081/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 Marks.
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SESH2011	DIFFERENTIAL EQUATIONS
CO1	Describe 1st and 2nd order ODEs and PDEs.
CO2	Classify differential equations and evaluate linear and non linear partial differential equations.
CO3	Illustrate engineering problems (growth, decay, flow, spring and series/parallel electronic circuits) using 1st and 2nd order ode.
CO4	Apply laplace transform as a tool which are used to evaluate differential equation and fourier integral representation.
CO 5	Examine the various tests of power series and fourier series for learning engineering.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Ordinary Differential Equation	1, 2, 3, 5
2	Partial Differential Equation	1, 2, 4, 5
3	Application of ODE and PDE	1, 2, 4, 5, 6
4	Laplace Transform	1, 2, 3, 5
5	Fourier Series	1, 2, 3, 5
6	Fourier Integral and Transformation	1, 2, 3, 4

Department of Civil Engineering

Course Code: SECV2102

Course Name: Advanced Solid Mechanics

Prerequisite Course(s): Engineering Mechanics (SECV1030), Solid Mechanics (SECV1070)/

Mechanics of Solids (SECV1080)

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minatio	on Schei	ne (Ma	rks)		
Theory Practical Tutorial Cr		Credit	The	eory	Prac	ctical	Tute	orial	Total	
Theory	Flactical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to understand

- the stresses developed under the application of force.
- the effect of torsion on material.
- behavior of structural element under the influence of various stresses.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Bending Stress in Beam Theory of simple bending, Assumptions, Derivation of flexural formula, Position of Neutral axis, Section modulus, Second moment of area of common cross sections (rectangular, I,T,C) with respective centroid & parallel axes, Bending stress distribution diagrams,	08	18
2.	Shear Stress in Beam Shearing stresses at a section, Derivations of shear stress distribution formula for different sections, shear stress distribution diagrams for common symmetrical sections, Maximum and average shears stresses, Shear connection between flange & web.	08	18
3.	Direct & Bending Stress Eccentric loading, Symmetrical column with eccentric loading about one axis, Symmetrical columns with Eccentric loading about two axis, Unsymmetrical columns with Eccentric loading.	07	14

	Section II					
Module No.	Content	Hours	Weightage in %			
1.	Dams Introduction, Types of dams, Rectangular dam, Stress across the section of the dam, Trapezoidal dam, stability of dam.	08	18			
2.	Introduction, Failure of a column, Assumptions in Eural's Theory, End conditions for long column, Expression for crippling load when both ends of the column are hinges, Expression for crippling load when both ends of the column are Fixed, Expression for crippling load when both ends of the column are Free, Expression for crippling load when one end of the column is fixed and other is hinged, Effective length of column, Limitations of Eural's formula, Rankine's formula.	07	16			
3.	Torsion Derivation of equation of torsion, Assumptions, Application of theory of torsion equation to solid & hollow circular shaft, Torsional rigidity, Power Transmitted by shaft, Polar moment of Inertia.	07	16			

Sr. No.	Name of Practical	Hours
1.	Torsion Test	02
2.	Fatigue Test	02
3.	Tutorials on Bending Stress in Beam	04
4.	Tutorials on Shear Stress in Beam	04
5.	Tutorials on Direct and Bending Stress, Torsion	04
6.	Tutorials on Dam	06
7.	Tutorials on Column & Strut	04
8.	Tutorials on Torsion	04

Text Book(s):

Title	Author/s	Publication
Strength of Materials (SI Units)	Dr. R. K. Bansal	Laxmi Prakashan

Reference Book(s):

Title	Author/s	Publication
Strength of Materials (SI Units)	R. S. Khurmi	S. Chand & Company Pvt. Ltd.
Strength of Materials (SI Units)	Er. R . K. Rajput	S. Chand & Company Pvt. Ltd.
Mechanics of Structure-Vol. I	Dr. H.J. Shah & S. B.	Charotar Publishing House Pvt.
	Junarkar	Ltd.
Strength of materials	R. Subramanian	Oxford Publications
Strength of materials	S. Ramamrutham	Dhanpat Rai Publishing Company

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SECV2102	ADVANCED SOLID MECHANICS	
CO1	Apply mathematical knowledge to calculate the deformation behavior of simple	
	structure.	
CO2	Analyze the critical problems and solve the problem related to mechanical	
	elements and analyze the deformation behavior for different types of loads.	
CO3	Perceive the different types of stresses and strains developed in the member	
	subjected to axial, bending, shear & torsional effects.	
CO4	Apprehension of the physical properties of materials.	
CO 5	Study the concept of shearing force and bending moment due to external loads in	
	determinate beams and their effect on stresses.	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Bending Stress in Beam	1, 2, 3
2	Shear Stress in Beam	2, 3, 4
3	Direct & Bending Stress	2, 4, 5
4	Dams	3, 4, 5
5	Column & Strut	1, 2, 5, 6
6	Torsion	2, 4, 5

Department of Mechanical Engineering

Course Code: SEME2910

Course Name: Industrial Exposure Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical	Tutorial	Crodit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total
02		02	00	00	100	00	00	00	100	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective of the Course:

To help learners to

- get exposed to the industrial spectrum.
- learn the mechanisms of industry/ workplace.
- be aware about work culture and policies of industries.

Outline of the Course:

Sr. No	Content	
1.	Selection of Companies	
2.	Company Information collection	
3.	Report Writing	
4.	Presentation & Question-Answer	

Course Evaluation:

Sr. No.	Evaluation criteria	Marks
1	Actual work carried & Report Submission	50
2	Final Presentation & Question-Answer session	50
	Grand Total:	100

Course Outcome:

After completion of the course, the student will be able to

- get acquainted with the industrial scenario.
- be aware about his future prospects in the respective field.
- gain knowledge of work culture and industrial expectations.

Report Writing Guidelines

A. Report Format:

1. Title Page (to be provided by the respective supervisor)

The title page of the project shall give the following information in the order listed:

- Full title of the project as approved by the Mentor;
- The full name of the student/Group of students with enrollment number;
- The qualification for which the project is submitted;
- The name of the institution to which the project is submitted;
- The month and year of submission.
- 2. Project Certification Form

[The form should be duly filled signed by the supervisors.]

3. Acknowledgements

[All persons (e.g. supervisor, technician, friends, and relatives) and organization/authorities who/which have helped in the preparation of the report shall be acknowledged.]

- 4. Table of Contents/Index with page numbering
- 5. List of Tables, Figures, Schemes
- 6. Summary/abstract of the report.
- 7. Introduction/Objectives of the identified problem
- 8. Data Analysis and Finding of Solution
- 9. Application of the identified solution
- 10. Future Scope of enhancement of the Project and Conclusion
- 11. "Learning during Project Work", i.e. "Experience of Journey during Project Duration"
- 12. References(must)
- 13. Bibliography
- 14. Annexures (if any)

B. Guideline for Report Formatting:

- Use A4 size page with 1" margin all sides
- Header should include Project title and footer should contain page number and enrollment numbers
- Chapter Name should be of Cambria font, 20 points, Bold
- Main Heading should be of Cambria font, 14 points, Bold
- Sub Heading should be of Cambria font, 12 points, Bold
- Sub Heading of sub heading should be of Cambria font, 12 points, Bold, Italic
- Paragraph should be of Cambria font, 12 points, no margin at the start of the paragraph
- Line spacing for all content 1.15, before 0, after 0
- No chapter number for references
- Before chapter 1, give page numbers in roman letter

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2910	INDUSTRIAL EXPOSURE		
CO1	Construct company profile by compiling brief history, management structure products/services offered, key achievements and market performance for the		
	company visited during internship.		
CO2	Determine the challenges and future potential for his/her internship organization		
	in particular and the sector in general.		
CO3	Test the theoretical learning in practical situations by accomplishing the ta		
	assigned during the internship period.		

CO4	Apply various soft skills such as time management, positive attitude and communication skills during performance of the tasks assigned in internship organization.
CO5	Analyze the functioning of internship organization and recommend changes for
	improvement in processes.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Selection of Companies	1, 2
2	Company Information collection	1, 2, 3
3	Report Writing	1, 2, 3, 4
4	Presentation & Question-Answer	1

Department of Science & Humanities

Course Code: SESH2022

Course Name: Numerical & Statistical Analysis

Prerequisite Course(s): SESH1020-Linear Algebra & Vector Calculus,

SESH2011-Differential Equations

SESH2031-Differential Methods for Chemical Engineers

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			eme (Hours/Week) Examination Scheme (Marks)							
Theory Dragtical T	1 Tutowial Condit	Tutorial Cradit		eory	Prac	ctical	Tut	orial	Total	
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	02	05	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide with the knowledge of numerical analysis & statistical methods to the students.
- identify and formulate the engineering problems and obtain their solution.
- inculcate the analytical skills to apply the Numerical & Statistical techniques to the problems of respective field.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Complex Variables Complex numbers with operators and geometric representation, Analytic function, Derivative of complex function, Cauchy-Riemann equation, Trigonometric and Hyperbolic functions, Complex Integration, Conformal Mapping, Linear functional transformations, Cauchy's Integral, Calculation of residue	10	20				
2.	Numerical Solutions of Linear and Non-linear Equations Errors and Their computations, General error formula, Bisection Method, Iteration Method, Newton-Raphson Method, Solution of system of non-linear equation, Solution of linear system, Gauss Elimination	6	13				
3.	Numerical Differentiation and Integration Interpolation, Finite Differences, Error in numerical differentiation, Cubic Splines Method, Differentiation Formulae, Numerical solution of ODEs, Picard's Method, Euler's Method, Runge-Kutta Method, Numerical Integration,	7	17				

	Trapezoidal Rule, Simpson's 1/3-rule, Simpson's 3/8-rule, Euler-Maclaurin Formulae							
	Section II							
Module	Content	Hours	Weightage in %					
1.	Basics of Statistics Elements, Variables, Observations, Quantitative and Qualitative data, Cross-sectional and Time series data, Frequency distribution, Dot plot, Histogram, Cumulative distribution, Measure of location, Mean, Median, Mode, Percentile, Quartile, Measure of variability, Range, Interquartile Range, Variance, Standard Deviation, Coefficient of Variation, Regression Analysis, Regression line and regression coefficient, Karl Pearson's method.	7	15					
2.	Probability Distribution Introduction, Conditional probability, Independent events, independent experiments, Theorem of total probability and Bayes' theorem, Probability distribution, Binomial distribution, Poisson distribution, Uniform distribution, Normal distribution.	8	18					
3.	Testing of Hypothesis Introduction, Sampling, Tests of significance for parametric test, Null Hypothesis, Type 1 and Type 2 errors, Level of significance, Chi-square test, Student's t-test, Seducer's f-test	7	17					

List of Tutorials:

Sr No	Name of Tutorial	Hours
1.	Complex Variables-1	4
2.	Complex Variables-2	2
3.	Numerical Solutions of Linear and Non-linear Equations-1	2
4.	Numerical Solutions of Linear and Non-linear Equations-2	4
5.	Numerical Differentiation and Integration-1	2
6.	Numerical Differentiation and Integration-2	2
7.	Basics of Statistics-1	2
8.	Basics of Statistics-2	4
9.	Probability-1	2
10.	Probability-2	2
11.	Testing of Hypothesis-1	2
12.	Testing of Hypothesis-2	2

Text Book(s):

Title	Author/s	Publication		
Advanced Engineering	Erwin Kreyszig	Wiley India Pvt. Ltd., New		
Mathematics		Delhi.		

Probability and Statistics for	Richard A. Johnson	Pearson India Education
Engineers	Irwin Miller, John Freund	Services Pvt. Ltd., Noida.

Reference Book(s):

Title	Author/s	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers, New Delhi
Advanced Engineering	R. K. Jain, S. R. K.	Narosa Publishing House, New
Mathematics	Iyengar	Delhi
Introductory Methods of	S. S. Sastry	PHI Learning Pvt. Ltd.
Numerical Analysis		New Delhi

Web Material Links:

- 1) http://nptel.ac.in/courses/111106094/
- 2) http://nptel.ac.in/courses/111106084/
- 3) http://nptel.ac.in/courses/111105035/
- 4) http://nptel.ac.in/courses/111101003/
- 5) http://nptel.ac.in/courses/111105090/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 Marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SESH2022	NUMERICAL & STATISTICAL ANALYSIS
CO 1	Derive numerical solution of linear and non linear system of equation.
CO 2	Apply probability in decision making, artificial intelligence, machine learning etc.
CO 3	Construct different statistical methods to collect, compare, interpret & evaluate
	data.
CO 4	Acquire knowledge of finite differences, interpolation, numerical differentiation
	and numerical integration.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Complex variables	1, 2, 3, 4, 6
2	Numerical Solutions of Linear and Non-Linear	1, 2, 3, 5
	Equations	
3	Numerical Differentiation and Integration	1, 2, 3, 5
4	Basics of Statistics	1, 2, 3, 4, 5
5	Probability Distribution	1, 2, 3, 4, 5
6	Testing of Hypothesis	1, 2, 3, 5, 6

Department of Mechanical Engineering

Course Code: SEME2050

Course Name: Forming and Machining Processes

Prerequisite Course(s): -- SEME2110 - Casting & Joining Processes, SEME1020 - Engineering

Workshop

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)								
Theory Dwestical Tu	Tutorial Credit		l Tutorial Credit -		The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
03	02	00	04	40	60	20	30	00	00	150	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• understand the basic operation involved in various machines.

• understand the machining science using conventional machines.

Section I						
Module	lle Content		Weightage			
			in %			
1.	Mechanical working of Metals Introduction, Classification of Forming Processes, Mechanics of Metal Working, Various Temperatures in Metal Working, Cold and Hot Working, Formability, Strain Rate Effects on metal forming, Effects of Metallurgical Structure on Metal Forming, Hydro Static Pressure, Residual Stresses.	07	16			
2.	Metal Rolling Introduction and classification of Rolling processes, Principles of Metal Rolling, Simplified Analysis of Rolling Load, Various Rolling Parameters, Defects in rolled products and remedies of it.	03	07			
3.	Forging Introduction and classification of Forging Processes, Various Forging operations, Forging Die Materials and Lubrication, Forge ability, Forging, Defects and remedies.	04	08			
4.	Extrusion Introduction and classification of Extrusion Processes, Various Extrusion Operations, Metal Deformation and Forces in Extrusion. Materials and Lubrication considerations in Extrusion Process, Extrusion Defects, Extrusion of Tubing,	05	12			

	Production of Seamless Pipe and Tubing. Drawing of Rods, Wires and Tubes, Sizing.		
	Press Working and Dies		
5.	Types of presses drive and feed mechanisms, press tools. Various press working operations and its parameters, Elements of press, Various Metal Forming Operations. Stock strip layout, study of sheet metal nesting software.	03	07
	Section II		
Module			Weightage
No.	Content	Hours	in %
	Turning Machine		
1.	Engine Lathes, Construction, Arrangement and Principle, Units of engine lathes, Type and size range of engine lathes; Operations carried on engine lathe, Attachment extending the processing capacities of engine lathes; Description of other types of lathes, Plain turning lathes, Facing lathes, Multiple tool lathes; Simple purpose lathes, Turret lathes, Horizontal and Vertical lathes.	08	17
	Milling Machines		
2.	Purpose and types of milling machines, general purpose milling machines. Different types of milling operations. Milling cutters, attachments extending the processing capabilities of general purpose milling machines.	06	15
	Planers, Shapers and Slotters		
3.	Classification, Attachments extending the processing capacities of each.	03	06
	Sawing and Broaching Machines		
4.	Metal sawing – classification; Reciprocating sawing machines, Circular sawing machines, Band sawing machines. Types of broaching machines, Advantages and Limitations of Broaching.	02	04
	Drilling, Boring, Grinding Machines and Abrasives		
5.	Application of drilling and boring machines. Upright drill processes, radial drills, Horizontal and Precision Boring Machines. Classifications of grinding machines, Cylindrical grinders, Internal grinders, Surface grinders, Tool and Cutter grinders. Surface finishing, Abrasives, Manufacture of grinding wheels.	04	08

Sr	Name of Practical	Hours
No		
1.	Rolling Operation Using Three Roller Bending Machine	02
2.	Forging Operation	02
3.	Bending Operation Using Hydraulic Pipe Bender	02
4.	Press and Press Working Operations	04

5.	Turning practices for Step turning and thread cutting	
6.	Capstan and Turret Lathe	02
7.	Spur Gear Cutting on Milling Machine	04
8.	Planers, Shapers and Slotters Machine	04
9.	Drilling machine	02
10.	Grinding machine	02

Text Book(s):

Title	Author/s	Publication
Manufacturing Processes vol I	O.P. Khanna	Dhanpatrai Publication
Workshop Technology Vol. I, II & III	WAJ Chapman	Elseveir

Reference Book(s):

Title	Author/s	Publication
Workshop Technology Vol. II	Hajra & Choudhari	Media promoters &
Workshop reclinology vol. ii	Tiaji a & Ciloudilai i	publishers pvt. Ltd.
Metal Cutting Principles, 2E	Shaw	Oxford
A Textbook of Production Technology	Sharma P.C.	S Chand

Web Material Links:

https://nptel.ac.in/courses/112107145

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2050	FORMING AND MACHINING PROCESS
CO1	Memorize and apply techniques involved in various metal forming processes.
CO2	Identify machining operations and tools to create work products.
CO3	Apply and generate sequence of machining operation for better manufacturing practices.
CO4	Ability to identify, formulate, and solve engineering & real-life problems.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Mechanical Working of Metals	1, 2, 5, 6
2	Metal Rolling	1, 2, 5, 6
3	Forging	1, 2, 5, 6
4	Extrusion	1, 2, 5, 6
5	Press Working and Dies	2, 6
6	Turning Machine	2, 4, 5, 6
7	Milling Machine	2, 4, 5, 6
8	Planers, Shapers and Slotters	2, 6
9	Sawing and Broaching Machines	2, 6
10	Drilling, Boring, Grinding Machines and Abrasives	2, 5, 6

Department of Mechanical Engineering

Course Code: SEME2060 Course Name: Fluid Mechanics Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minati	on Schei	ne (Ma	rks)		
Theory	Theory Practical Tutorial Credit		The	eory	Prac	ctical	Tute	orial	Total	
Theory	Fractical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand basic fundamentals of Fluid Mechanics, which is used in the applications of Aerodynamics, Hydraulics, Marine Engineering, Gas dynamics etc.
- learn Fluid Properties.
- understand the importance of flow measurement and its applications in Industries and to obtain the loss of flow in a flow system.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Properties of Fluids Density, Viscosity, Surface Tension, Compressibility, Capillary, Vapour Pressure, Bulk Modulus, Cavitation, Classification of Fluids	02	5
2.	Fluid Statics Force and Pressure, Pascal's law of Pressure at a point, Pressure measurement by Manometers – U tube, Inclined U tube and Differential, Centre of Pressure, Hydrostatic forces on surface – Vertical, Horizontal and Inclined, Forces on curved Surfaces, Buoyancy and Buoyant Force, Centre of Buoyancy and Meta Centre, Determination of Metacentric Height, Stability of Floating and Submerged Body, Position of metacenter relative to Centre of buoyancy.	07	15
3.	Fluid Kinematics Steady and Unsteady Flow, One – two and three Dimensional Flow, Uniform and Non Uniform Flow, Rotational and	07	15

Irrotational Flow, Stream Lines and Stream Function, Velocity Potential Function, Relation between stream and velocity potential function, Flow nets, Continuity Equation for 2D and 3D flow in Cartesian co-ordinates system Fluid Dynamics			1		
Potential function, Flow nets, Continuity Equation for 2D and 3D flow in Cartesian co-ordinates system Fluid Dynamics		-			
SD flow in Cartesian co-ordinates system Fluid Dynamics Newton's law of motion, Euler's Equation and its applications, Bernoulli's Equation and its applications, Momentum Equation, Pitot Tube, Determination of volumetric flow with pitot tube, Principle of Venturimeter, Pipe Orifice and Rotameter. Section II		•			
Fluid Dynamics Newton's law of motion, Euler's Equation and its applications, Bernoulli's Equation and its applications, Momentum Equation, Pitot Tube, Determination of volumetric flow with pitot tube, Principle of Venturimeter, Pipe Orifice and Rotameter. Section II Module No. Dimensional Analysis Dimensions, Dimensional Homogeneity, Raleigh and Buckingham π Theorem, Non-Dimensional Numbers, Similarities – Geometrical, Kinematics and Dynamic. Flow Through Pipes & Open Channels Major and Minor Losses in Pipes, Losses in Pipe Fittings, Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		potential function, Flow nets, Continuity Equation for 2D and			
Newton's law of motion, Euler's Equation and its applications, Bernoulli's Equation and its applications, Momentum Equation, Pitot Tube, Determination of volumetric flow with pitot tube, Principle of Venturimeter, Pipe Orifice and Rotameter. Section II Module No. Dimensional Analysis Dimensions, Dimensional Homogeneity, Raleigh and Buckingham π Theorem, Non-Dimensional Numbers, Similarities – Geometrical, Kinematics and Dynamic. Flow Through Pipes & Open Channels Major and Minor Losses in Pipes, Losses in Pipe Fittings, Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		3D flow in Cartesian co-ordinates system			
4. Bernoulli's Equation and its applications, Momentum Equation, Pitot Tube, Determination of volumetric flow with pitot tube, Principle of Venturimeter, Pipe Orifice and Rotameter. Section II		Fluid Dynamics			
Pitot Tube, Determination of volumetric flow with pitot tube, Principle of Venturimeter, Pipe Orifice and Rotameter. Section II Module No. Dimensional Analysis Dimensions, Dimensional Homogeneity, Raleigh and Buckingham π Theorem, Non-Dimensional Numbers, Similarities – Geometrical, Kinematics and Dynamic. Flow Through Pipes & Open Channels Major and Minor Losses in Pipes, Losses in Pipe Fittings, Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		Newton's law of motion, Euler's Equation and its applications,			
Principle of Venturimeter, Pipe Orifice and Rotameter.	4.	Bernoulli's Equation and its applications, Momentum Equation,	06	15	
Module No. No. Content Hours Weightage in %		Pitot Tube, Determination of volumetric flow with pitot tube,			
Module No. Content Hours Weightage in % 1. Dimensional Analysis		Principle of Venturimeter, Pipe Orifice and Rotameter.			
No. Dimensional Analysis		Section II			
Dimensional Analysis Dimensions, Dimensional Homogeneity, Raleigh and Buckingham π Theorem, Non-Dimensional Numbers, Similarities – Geometrical, Kinematics and Dynamic. Flow Through Pipes & Open Channels Major and Minor Losses in Pipes, Losses in Pipe Fittings, Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,	Module	Contont	Цоига	Weightage	
1. Dimensions, Dimensional Homogeneity, Raleigh and Buckingham π Theorem, Non-Dimensional Numbers, Similarities – Geometrical, Kinematics and Dynamic. Flow Through Pipes & Open Channels Major and Minor Losses in Pipes, Losses in Pipe Fittings, Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,	No.	Content	Hours	in %	
1. Buckingham π Theorem, Non-Dimensional Numbers, Similarities – Geometrical, Kinematics and Dynamic. Flow Through Pipes & Open Channels Major and Minor Losses in Pipes, Losses in Pipe Fittings, Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		Dimensional Analysis			
Buckingham π Theorem, Non-Dimensional Numbers, Similarities – Geometrical, Kinematics and Dynamic. Flow Through Pipes & Open Channels Major and Minor Losses in Pipes, Losses in Pipe Fittings, Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,	1	Dimensions, Dimensional Homogeneity, Raleigh and	0E	10	
Flow Through Pipes & Open Channels Major and Minor Losses in Pipes, Losses in Pipe Fittings, Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,	1.	Buckingham π Theorem, Non-Dimensional Numbers,	03		
Major and Minor Losses in Pipes, Losses in Pipe Fittings, Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		Similarities – Geometrical, Kinematics and Dynamic.			
Hydraulic Gradient line and Total energy line, Equivalent Pipes, Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		Flow Through Pipes & Open Channels			
2. Pipes in series and parallel, Siphon, Power transmission through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		Major and Minor Losses in Pipes, Losses in Pipe Fittings,			
through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		Hydraulic Gradient line and Total energy line, Equivalent Pipes,			
through pipe, Moody's Diagram, Dracy Weishbach Equation, Types of open channel flow, Specific Energy and Specific Force, Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,	2	Pipes in series and parallel, Siphon, Power transmission	00	20	
Critical Flow, Hydraulic Jump, Measurement of Discharge in open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,	۷.	through pipe, Moody's Diagram, Dracy Weishbach Equation,	09		
open Channels. Viscous Flow Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		Types of open channel flow, Specific Energy and Specific Force,			
Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		Critical Flow, Hydraulic Jump, Measurement of Discharge in			
Reynolds number and Reynolds experiment, flow of viscous fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		open Channels.			
3. fluid through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		Viscous Flow			
viscous fluid between two parallel fixed plates, power absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		Reynolds number and Reynolds experiment, flow of viscous			
absorbed in viscous flow through - journal, foot step and collar bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,	2	fluid through circular pipe- Hagen Poiseuille formula, Flow of	OF	10	
bearing, measurement of viscosity. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,	3.	viscous fluid between two parallel fixed plates, power	05	10	
4. Boundary Layer Theory Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,					
4. Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift,		bearing, measurement of viscosity.			
4. Momentum Thickness, Displacement Thickness, Drag and Lift, 04 10	4.	Boundary Layer Theory			
Momentum Thickness, Displacement Thickness, Drag and Lift,		Concept of Boundary Layer, Boundary layer Thickness,	0.4	10	
Separation of Boundary layer, Streamlined and Bluffed Bodies.		Momentum Thickness, Displacement Thickness, Drag and Lift,	t, U4 10		
		Separation of Boundary layer, Streamlined and Bluffed Bodies.			

Sr No	Name of Practical	Hours
1.	Determine metacentric height of floating body.	02
2.	Measurement of pressure using different types of manometers.	02
3.	Determine Co-efficient of Discharge by venturimeter, Orificemeter and Rotameter.	06
4.	Verification of Bernoulli's apparatus.	02
5.	Measurement of velocity of flow using Pitot tube.	02
6.	Measurement of Friction factor for Different pipes.	04
7.	Measurement of viscosity using Redwood Viscometer.	02

8.	Determine discharge through triangular notch.	02
9.	Determine discharge through trapezoidal notch.	02
10.	Determine discharge through rectangular notch.	02
11.	Determine different flow patterns by Reynolds's apparatus.	02
12.	Determine friction loss for different pipes fittings	02

Text Book(s):

Title	Author/s	Publication
Textbook of Fluid Mechanics and Hydraulic Machines	R. K. Bansal	Laxmi Publications
Introduction to Fluid Mechanics and Fluid	S.K.Som &	Tata McGraw Hill
Machines	Biswas.G	Publication

Reference Book(s):

Title	Author/s	Publication
Fluid Mechanics	Frank M. White	Tata McGraw Hill Publication
Fluid Mechanics	R.K.Rajput	Schand Publication

Web Material Links:

• http://nptel.ac.in/courses/112105171/1

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 15 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 10 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2060	FLUID MECHANICS
CO 1	Differentiate fluid properties and its behavior in static and dynamic mode.
CO 2	Apply dimensional analysis to design the system and interpret types of fluid flow.
CO 3	Determine major and minor losses through different pipes.
CO 4	Diagnose the viscosity of fluids.
CO 5	Diagnose pressure exerted by the fluids and rate of flow of fluids.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Properties of Fluids	1, 2
2	Fluid Statics	1, 2, 5
3	Fluid Kinematics	1, 2, 5
4	Fluid Dynamics	2, 3, 4, 5
5	Dimensional Analysis	2, 3, 5
6	Flow Through Pipes & Open Channels	2, 3, 4, 5
7	Viscous Flow	2, 3, 4, 5
8	Boundary Layer Theory	2, 3, 4, 5

Department of Mechanical Engineering

Course Code: SEME2070

Course Name: Mechanical Measurement and Metrology

Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Theory Drestinal Tytorial		y Practical Tutorial Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- know various types and methods of measurement.
- assess the suitability of measuring instruments.
- describe the basic concepts of metrology.
- know how to operate different types of mechanical measuring instruments.
- explain the different instruments used in industry.
- evaluate quality of surface produced using various methods of measurements.

Section I					
Module No.	Content	Hours	Weightage in %		
1.	Principles of Metrology Concept of Metrology, Need for inspection, Linearity, Repeatability, Sensitivity and readability, Precision & Accuracy, Standards of measurements.	02	05		
2.	Screw threads and gear Metrology Measurement of Screw thread: Screw terminology, Errors in threads, measuring elements of the internal and external threads. Measurement of Gear: Introduction and Classification of gears, Forms of gear teeth, Gear tooth terminology, Measurement and testing of spur gear: Various methods of measuring tooth thickness, tooth profile and pitch, Gear Errors.	08	15		
3.	Surface Roughness Metrology Introduction, Surface Texture, Methods of Measuring Surface finish, Comparison Methods and Direct Instrument Measurement, Sample Length, Numerical Evaluation of Surface	04	09		

		I	
	Texture, Indication of Surface roughness Symbols used, Adverse effects of poor surface finish		
	Straightness, Flatness, Squareness, Parallelism and		
4.	Machine Tool Tests Introduction, Measurement of Straightness, Flatness, Squareness and Parallelism, run out and concentricity, Tool makers microscope, Interferometry and its use in checking flatness, surface contour, parallelism etc., Interferometers and optical flats, Introduction to Machine tool testing; Various Alignment test on lathe, Milling Machine, Drilling Machine etc.	05	12
	Miscellaneous Metrology		
5.	Measurement of Force, Torque, Power, Measurement of displacement, Velocity and Acceleration, Measurement of Speed and Frequency	04	09
	Section II		
Module	Content	Hours	Weightage
No.	Content	Hours	in %
1.	Measurement Concept Economics of measurement, Need of mechanical measurement, Basic definitions: Hysteresis, Linearity, Resolution of measuring instruments, Threshold, Drift, Zero stability, loading effect and system response. Source of Errors and their classification. Methods of measurement and performance characteristics	04	09
2.	Linear Measurements Precision and Non-precision linear Measurements, Vernier caliper, Micrometer, Use of End standard – Slip Gauge, Indian standard on Slip gauge, Care and use of slip gauge for workshop and inspection purpose, Telescopic gauge, Comparators.	06	14
3.	Angular and Taper Measurements Introduction; Working principle and construction of Angular Measuring instruments like Protractors, Sine bars, Sine Centre, Angle gauges, Spirit level, Clinometers, Angle dekkor, Taper Measuring Instruments: Measurement of taper shafts and Holes	04	09
4.	Temperature measurement Temperature scales, Temperature measuring devices, Methods of Temperature Measurement, Expansion Thermometers; Filled System thermometers; Electrical Temperature Measuring Instrument, Pyrometers; Calibration of Temperature Measuring Instruments.	04	09
5.	Inspection Technologies History of Coordinate Measuring Machines, Important feature of CMM, CMM construction, CMM Operation and Programming,	04	09

Performance of CMM, Possible causes of errors in CMM,	
Trigger type and Measuring type probes in computer	
controlled CMM, Accuracy Specification for CMM, Calibration	
of CMM, CMM Applications and Benefits, Role of computer in	
field of Metrology	

List of Practical:

Sr No	Name of Practical	Hours
1.	Study of various instrument characteristics	02
2.	Study, Use and calibration of Linear Measuring Instruments	08
3.	Study and use of slip gauge	02
4.	Study of angle measurement using (a) Bevel Protractor (b) Combination Set and (c) Sine Bar	08
5.	Study of Temperature Measurement	02
6.	Study of Surface Roughness Tester	02
7.	Study of Gear Tooth Measurement	02
8.	Study Strain gauge Transducer	04
9.	Study of Coordinate Measuring Machines (CMM) (Industrial Visit)	-

Text Book(s):

Title	Author/s	Publication
Textbook Of Metrology	M. Mahajan	Dhanpat rai & Co.
Mechanical Measurements & Control	D. S. Kumar	Metropolitan books co pvt ltd

Reference Book(s):

Title	Author/s	Publication	
Mechanical Measurement and	R K Jain	Khanna Publisher	
Metrology	K K Jaiii		
Mechanical Measurements	R K Rajput	Kataria Publication	
and Instrumentations	K K Kajput		
Mechanical Measurements	Beckwith & Buck	Narosa publishing	
Mechanical Measurements	Deckwitti & Buck	House	
Metrology and Measurement	Anand Bewoor & Vinay Kulkarni	McGraw-Hill	

Web Material Links:

• http://nptel.ac.in/courses/112106179

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2070	MECHANICAL MEASUREMENT & METROLOGY			
CO 1	Select linear and angular measuring instrument for measurement of various			
	components			
CO 2	Distinguish between various gears and screws by measuring their dimensions			
CO 3	Measure surface finish of the component produced			
CO 4	Compare appropriate temperature measuring device for various applications			
CO 5	Describe methods of measurement for various quantities like force, torque,			
	power, displacement.			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Principles of Metrology	1,2, 3
2	Screw threads and gear Metrology	2, 4, 5
3	Surface Roughness Metrology	2, 4, 5
4	Straightness, Flatness, Squareness, Parallelism and Machine Tool Tests	2, 4, 5
5	Miscellaneous Metrology	2, 3, 4, 5
6	Measurement Concept	2, 4, 5
7	Linear Measurements	2, 5
8	Angular and Taper Measurements	2, 5
9	Temperature Measurement	2, 5
10	Inspection Technologies	2, 3, 4, 5

Department of Mechanical Engineering

Course Code: SEME2081

Course Name: Kinematics of Machinery

Prerequisite Course(s): SECV1030-Engineering Mechanics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minati	on Schei	ne (Ma	rks)		
Theory Practical Tutorial		heory Practical Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
04	00	00	04	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the leaners to learn:

- basics types of mechanism, degree of freedom, joints.
- about velocity and acceleration analysis for different mechanism.
- about kinematic analysis of cam and follower motion.
- about types of belts, ropes, chain and gears drives and its applications.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Basics of Mechanisms Introduction, Mechanism and machine, Rigid and resistant body, Link, Kinematic pair, Types of motion, Degrees of freedom (mobility), Classification of kinematic pairs, Kinematic chain, Linkage, Mechanisms, Kinematic inversion, Inversions of slider crank chain, Synthesis of Mechanism, Double slider-crank chain, Quick return mechanism, Limiting Positions and Mechanical Advantage.	06	10			
2.	Velocity Analysis Vectors, Displacement of a rigid body, Relative displacement, Definition of velocity, Angular velocity, Rotation of a rigid body, Translation and rotation of a rigid body, Relative velocity method (graphical and analytical), Instantaneous axes of motion, Properties of instantaneous centers, The Aronhold - Kennedy theorem of three centers, Velocity analysis by instantaneous centers. The line-of-centers method, Velocity analysis by components, Velocity images, Velocity diagrams.	12	20			

3.	Acceleration Analysis Definition of acceleration, Angular acceleration, A general case of acceleration, Radial and transverse components of acceleration, The coriolis component of acceleration, Examples of acceleration analysis, Acceleration diagrams.	12	20
	Section II		
Module No.	Content	Hours	Weightage in %
1.	Kinematics of Belts, Ropes and Chain Drives Introduction, Belt and rope drives, Open and crossed belt drives, Velocity ratio, Slip, Materials for belt and ropes, Law of belting, Length of belt, Ratio of friction tensions, Power transmitted, Centrifugal effect on belts, Maximum power transmitted by a belt, Initial tension, Creep, Chains, Chain length, Angular speed ratio, Classification of chains.	07	10
2.	Kinematics of Gears Introduction, Classification of gears, Gear terminology, Law of gearing, Velocity of sliding, Forms of teeth, Cycloidal profile teeth, Involute profile Teeth, Comparison of Cycloidal and involute tooth forms, Path of contact, Arc of contact, number of pairs of teeth in contact, Interference in involute gears, Minimum number of teeth, Interference between rack and pinion, Undercutting, Introduction to helical, Spiral, Worm, Worm gear and bevel gears.	15	20
3.	Kinematics of Cams Introduction, Types of cams, Types of followers, Cam terminology, Displacement diagrams, Motions of the follower, Graphical construction of cam profile, High Speed CAM.	08	20

Text Book(s):

Title	Author/s	Publication
Theory of Machines	S. S. Rattan	Tata McGraw Hill Education
Theory of Machines and	John J. Uicker, Gordon R. Oxford University Pre	
Mechanisms	Pennock, Joseph E. Shigley	Oxidia diliversity Fless

Reference Book(s):

Title	Author/s	Publication
Mechanism and Machine Theory	J.S Rao, R.V Dukkipati	Wiley Eastern Ltd.
Theory of Mechanism and Machine	Ghosh A., Malick A.K	East-West Pvt. Ltd.

Web Material Links:

• http://nptel.ac.in/courses/112104121/1

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Tutorial:

- Continuous Evaluation consists of Performance of Tutorial which should be evaluated out of 10 marks for each Tutorial and average of the same will be converted to 10 marks.
- Internal Viva consists of 20 marks.
- Model of any mechanism having weightage of 10 marks.
- Problem Solution/Quiz of 10 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2081	KINEMATICS OF MACHINERY
CO 1	Understand the essential components of linkage and mechanism in the assembly
	of machines.
CO 2	Analyze the assembly with respect to the displacement, velocity, and acceleration
	at any point in a link of a mechanism.
CO 3	Apply the concept of the belt, rope, chains, and gear drives in machines
	operations.
CO 4	Understand a power transmission machine's element and its mechanism to solve
	the problems associated with it.
CO 5	Design a layout of cam and follower for specific motion.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Basics of Mechanisms	1, 2
2	Velocity Analysis	1, 2, 3, 5
3	Acceleration Analysis	1, 2, 3, 5
4	Kinematics of Belts, Ropes and Chain Drives	2, 5
5	Kinematics of Gears	2, 5
6	Kinematics of Cams	2, 5

Department of Mechanical Engineering

Course Code: SEME2090

Course Name: Software Tools for Mechanical Engineers

Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teacl	Teaching Scheme (Hours/Week) Examination Scheme (Marks)									
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
00	02	00	01	00	00	50	00	00	00	50

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the basics of mechanical software in engineering application.
- learn to use the tools of drafting software.
- explain the stress-strain analysis theory using simulation software.
- understand components of automation software and its industrial use.
- Learn to write the report and present work done.

Outline of the Course

Module No.	Content	Hours	Weightage in %
1.	Application of software tools for mechanical engineers	02	7
2.	Selection of Drafting software for preparing assembly joint etc.	08	27
3.	Selection of Analysis software for modeling and simulation	09	30
4.	Automation in mechanical application	08	30
5.	Report Writing	02	3
6.	Work Presentation	01	3

List of Practical/Exercise(s):

Sr. No	List of Practical/Exercises	Hours
1.	Understanding the basic details of mechanical software.	02
2.	Development of different surface.	02
3.	Selection of planes	02
4.	Preparation of assembly drawings in drafting software.	04
5.	Preparation of threads, studs, fasteners	02
6.	Assembling of section.	02
7.	Preparation of different beam section.	02

	Analysis of loading and unloading factors at different position of prepared	02
8.	beam (Bending moment, longitudinal stress, torsional stress etc based on	
	different selected factors)	
9.	Preparation of drilling tools, lathe tool, broaching tools and its simulation.	02
10.	Understanding computational fluid dynamics on ANSYS/ COMSOL	02

Course Evaluation:

Practical:

- Continuous Evaluation consists of performance of practical and noted the same in the manual and record book which should be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 30 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2090	SOFTWARE TOOLS FOR MECHANICAL ENGINEERS								
CO 1	pply skills and modern engineering tools for solving engineering problem.								
CO 2	Identify and understand importance of automation software.								
CO 3	Acquire knowledge about stress strain theory using simulation software.								
CO 4	Develop the idea of identifying, analyzing and designing tools based on automation software.								

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Application of software tools for mechanical	2, 3
	engineers	
2	Selection of drafting software for preparing assembly joint etc.	2, 3, 4
3	Automation in Mechanical Application	2, 3, 4, 6
4	Report Writing	1, 2
5	Work Presentation	1

THIRD YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. MECHANICAL PROGRAMME AY:2021-22

					Teaching Scheme						Examination Scheme							
Sem	Course	Course Title	Offered		Contact	Hours			Theory		Practical		Tutorial					
Sein	Code	course ride	Ву	Theory	Practical	Tutorial	Total	Credit	CE	ES E	CE	ESE	CE	ESE	Total			
	SEME3111	Heat & Mass Transfer	ME	3	2	0	5	4	40	60	20	30	0	0	150			
	SEME3021	Fluid Machines	ME	3	2	0	5	4	40	60	20	30	0	0	150			
	SEME3031	Dynamics of Machinery	ME	3	2	0	5	4	40	60	20	30	0	0	150			
	SEME3051	Production Technology	ME	3	2	0	5	4	40	60	20	30	0	0	150			
5	SEME3090	Industrial Engineering	ME	3	0	0	3	3	40	60	0	0	0	0	100			
3	CFLS3021	Foreign Language-II	CFLS	2	0	0	2	2	40	60	0	0	0	0	100			
	SEME3910	Summer Training	ME		4		4	4	0	0	100	0	0	0	100			
	SEPD3050	Integrated Personality Development Course - II	SEPD	2	0	0		1	100	0	0	0	0	0	100			
		Elective-I		3	0	0	3	3	40	60	0	0	0	0	100			
						Total	30	29							1100			
	SEME3140	Design of Machine Elements	ME	3	0	1	4	4	40	60	0	0	50	0	150			
	SEME3121	Internal Combustion Engines	ME	2	2	0	4	3	40	60	20	30	0	0	150			
	SEME3080	Computer Aided Design & Manufacturing	ME	3	2	0	5	4	40	60	20	30	0	0	150			
	SEME3130	HVAC Systems	ME	2	2	0	4	3	40	60	20	30	0	0	150			
6	SEME3101	Power Plant Engineering	ME	3	0	1	4	4	40	60	0	0	50	0	150			
	SEPD3020	Corporate Grooming & Etiquette	SEPD	1	2	0	3	2	0	0	50	50	0	0	100			
	SEME3490	Online NPTEL Course		3	0	0	3	3	100	0	0	0	0	0	100			
						Total	27	23							950			

	ELECTIVE-I COURSES														
					Teach	ing Schem	e		Examination Scheme						
Sem	Course	Course Title	Offered		Contact 1	Hours			The	ory	Practical		Tutorial		
Jein	Code	course ritte	By	Theory	Practical	Tutorial	Total	Credit	CE	ES E	CE	ESE	CE	ESE	Total
	SEME3591	Fuels & Combustion	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3620	Production Management	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3530	Cost Estimation for Engineers	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3610	Product Development & Value Engineering	ME	3	0	0	3	3	40	60	0	0	0	0	100
5	SEME3602	Gas Dynamics	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3560	Industrial Maintenance & Safety	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3570	Mechatronics	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3581	Plastics, Ceramics & Composites	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3541	Design of Pressure Vessel & Piping	ME	3	0	0	3	3	40	60	0	0	0	0	100

Department of Mechanical Engineering

Course Code: SEME3011

Course Name: Heat & Mass Transfer

Prerequisite Course(s): SEME2011-Engineering Thermodynamics

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Ī	Theory Practical Tuto	Tutorial	Tutorial Credit		eory	Prac	ctical	Tut	orial	Total	
		Tractical	Tutoriai	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE
	03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- introduce and explain basic concept, principles and modes of heat transfer.
- calculate basis calculation based on heat transfer in various applications.
- calculate basis calculation applied in heat exchanger design.
- learn about analysis and design aspects in various engineering systems related to conduction, convection and radiation heat transfer.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Introduction Modes of Heat Transfer – Conduction; Convection and Radiation, Thermal Conductivity, Effect of temperature on thermal conductivity, derivation of generalized equation in Cartesian, cylindrical and spherical coordinates and its reduction to specific cases, General Laws of Heat Transfer.	04	09					
2.	Steady State Heat Conduction Fourier's Law, One Dimensional Steady State Conduction through Plane and Composite Wall; Plane and Composite Cylinder; Plane and Composite Sphere, Critical Radius of Insulation for Cylinder and Sphere, Overall Heat Transfer Co-efficient.	06	13					
3.	Unsteady State Heat Conduction (Trasient) Lumped Parameter Analysis, Transient Heat Conduction in solids with finite conduction and convection resistances.	06	14					
4.	Heat Transfer from Extended Surfaces (Fins) Types of Fins, Heat Transfer through Rectangular Fins, Infinitely Long Fins, Fins Insulated at tip and fins losing the heat from the tip, Efficiency and Effectiveness of Rectangular Fins, Biot Number	06	14					
	Section II							

Module No.	Content	Hours	Weightage in %
1.	Forced and Free Convection Newton's Law of Cooling, Dimensional Analysis applied for free and forced convection, Dimensionless Numbers and their physical significance, Energy integral equation of the boundary layer on a flat plate for forced convection, Empirical Correlations and their uses for free and forced convection, Thermal and Hydro Dynamic Boundary layer, Free Convection from vertical flat plate, Blasius Solution, General Solution for Von-Karman integral momentum equation.	08	17
2.	Radiation Absorptivity, Reflectivity and Transmissivity; Black, Grey and White Body; Emissivity and Emissive Power; Laws of Radiation – Planck's, Kirchoff's, Stefan Boltzmann, Wein's Displacement Law; Lambert Cosine Law; Radiation Shape Factor; Heat radiate between black bodies; Heat radiate between non black bodies, parallel plates and infinite long cylinders.	06	13
3.	Heat Exchangers Classification, Heat Exchanger Analysis, LMTD and e-NTU for parallel and counter flow heat exchanger, Fouling Factor, Correction Factor for Multi passes arrangements, Introduction of Heat Pipe and Compact Heat Exchanger.	06	13
4.	Two Phase Heat Transfer Fundamentals of Boiling and Condensation, Pool Boiling and its types, Condensation of vapour, Film wise and Drop wise condensation.	03	07

List of Practical:

Sr No	Name of Practical	Hours
1.	Thermal Conductivity of Composite Wall	02
2.	Thermal Conductivity of Insulating Powder	02
3.	Heat Transfer from a Pin Fin	02
4.	Heat Transfer by Unsteady state conduction	04
5.	Heat Transfer by Free Convection	04
6.	Heat Transfer by Forced Convection	04
7.	Measurement of Emissivity	02
8.	Measurement of Stefan Boltzmann Constant	02
9.	Heat Transfer in Tubular (Parallel and Counter Flow) Heat Exchanger	04
10.	Heat Transfer in Plate Heat Exchanger	02
11.	Critical radius of insulation.	02

Text Book(s):

Title	Author/s	Publication
Heat and Mass Transfer	Yunus A Cengen, Afshin J Ghajar	McGraw Hill Eduction
Heat Transfer	P K Nag	McGraw Hill Publication

Reference Book(s):

Title	Author/s	Publication
Heat and Mass Transfer	R K Rajput	S Chand Publication
Heat and Mass Transfer	D S Kumar	KATSON Books

Web Material Link(s):

• https://nptel.ac.in/downloads/112108149/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be considered.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3011	HEAT TRANSFER
CO1	Describe classify the heat transfer problems and to apply the principles of steady state
	one dimensional heat transfer, extended surface and unsteady state conduction for
	commonly encountered mechanical engineering problems.
CO2	Identify the type of convection problems and to apply concepts of natural and forced
	convection for related problems.
CO3	Adapt LMTD and effectiveness NTU method for simple heat exchange devices.
CO4	Integrate heat transfer principles to analyse various engineering applications.
CO5	Explain various laws of radiation heat transfer and to compute the radiation heat transfer
	between black and grey surfaces of simple mechanical systems.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1, 2
2	Steady State Heat Conduction	2, 3, 4, 5

3	Unsteady state Heat Conduction (Transient)	2, 3, 4, 5
4	Heat Transfer from Extended Surfaces (Fins)	2, 3, 4, 5
5	Forced and Free Convection	2, 4, 5
6	Radiation	2, 4, 5
7	Heat Exchangers	2, 4, 5
8	Two Phase Heat Transfer	2, 4, 5

Department of Mechanical Engineering

Course Code: SEME3021 Course Name: Fluid Machines

Prerequisite Course(s): SEME2060-Fluid Mechanics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Practical Tutorial		orial	Total	
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about applications of Fluid Mechanics.
- understand fluid power and different major equipment which can produce power from fluid.
- learn about operation and use of different hydraulic machines like Hydraulic Crane, Hydraulic Ram, Hydraulic Lift, Hydraulic Jack, Accumulator, Intensifier etc.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Hydro Power Plant Principles of Hydro Power Generation, Components and Layout of Hydro Power Plants, Classification; Advantages and Disadvantages of Hydro Power Plant.	02	04					
2.	Flow Over Immerged Bodies Introduction, Concept of Lift and Drag, Concept of Streamline and Bluff Bodies, Flow over Cylinder and Aerofoil	02	04					
3.	Fans And Blowers Construction details, governing equations, losses and performance curves	03	08					
4.	Impulse Turbines Classification of Turbines, Impulse and Reaction, Radial and Axial, Tangential and Mixed flow turbines, Working Principle, Construction of Pelton Wheel, Expression for Work done and Efficiency for Pelton Turbine, Velocity Triangle, Performance characteristic curve, Unit and Specific Quantities, Governing of Impulse Turbines.	07	16					
5.	Reaction Turbines Working Principle, Construction of Francis and Kaplan Turbines, Draft Tube Theory, Cavitation, Velocity Triangle, Performance characteristic curve, Unit and Specific Quantities, Governing of Reaction Turbines.	08	18					
	Section II							

Module	Content	Hours	Weightage
No.			in %
1.	Hydraulic Pumps Classification, Principle of Dynamic and Positive Displacement Pumps, Centrifugal Pump and its Velocity Diagrams, Work Done by Impeller, Various Efficiencies of Pumps, Pump Losses, NPSH, Specific Speed, Characteristic Curves, Priming, Operation of Single and Double acting reciprocating Pump, Volumetric Efficiency; Work done and Slip, Special Purpose Pumps, Cavitation, Effect of Air Vessels	12	26
2.	Impact of Jet Impact of jet on different types of flat and curved plates, Force exerted on Fixed and Moving Plates, Expression of Efficiency, Condition for Maximum Efficiency and Value for maximum efficiency.	06	13
3.	Miscellaneous Hydraulic Systems Construction and Working of Hydraulic Intensifier, Hydraulic Accumulator, Hydraulic Jack, Hydraulic Ram, Hydraulic Crane, Hydraulic Fluid Couplings and Torque Convertor	05	11

List of Practical:

Sr No	Name of Practical	Hours
1.	To Study about Hydro Power Plant	02
2.	Performance test on Pelton Turbine	04
3.	Performance test on Francis Turbine	04
4.	Performance test on Kaplan Turbine	04
5.	Performance test on Centrifugal Pump	02
6.	Performance test on Reciprocating Pump	02
7.	Performance test on Gear Pump	02
8.	Performance Test on Hydraulic Ram	04
9.	Impact of Jet on Vanes	02
10.	Performance test on Pumps in Series and Parallel	04

Text Book(s):

Title	Author/s	Publication	
Textbook of Fluid Mechanics and	R. K. Bansal	Laxmi Publications	
Hydraulic Machines	K. K. Dalisai	Laxini Publications	
Introduction to Fluid Mechanics and	S. K. Som & Biswas. G	Tata McGraw Hill	
Fluid Machines	S. K. SUIII & DISWAS. G	Publication	

Reference Book(s):

Title	Author/s	Publication
Fluid Mechanics and Fluid Power Engineering	D. S, Kumar	S K Kataria & Sons.
Turbines, Compressors and Fans	S. M. Yahya	Tata McGraw Hill
		Publication

Web Material Link(s):

• https://nptel.ac.in/courses/112104117/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3021	FLUID MACHINES
CO1	Understand the fundamentals of hydro power plant and its operation and construction.
CO2	Understand and apply the effect and importance of forces on immersed bodies.
CO3	Apply the knowledge of different types of fans and blowers, turbines and pumps.
CO4	Evaluate the turbine and pump performance and understand various hydraulic systems
	and their purpose in hydraulic machines.
CO5	Understand the concept of impact of jets on different positions of blades.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Hydro Power Plant	1, 2
2	Flow Over Immerged Bodies	1, 2, 5
3	Fans and Blowers	1, 2, 5
4	Impulse Turbines	1, 2, 5
5	Reaction Turbines	1, 2, 5
6	Hydraulic Pumps	1, 2, 5
7	Impact of Jet	1, 2, 5
8	Miscellaneous Hydraulic Systems	1, 2

Department of Mechanical Engineering

Course Code: SEME3031

Course Name: Dynamics of Machinery

Prerequisite Course(s): SEME2081-Kinematics of Machinery

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exa	aminati	on Scher	ne (Mar	·ks)	
Theory	Theory Dragtical Tutorial		ory Practical Tutorial Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about turning moment diagrams and the dynamics of reciprocating engines.
- understand balancing procedure of rotating and reciprocating masses.
- learn about forced and free vibrations.
- learn about governors and gyroscope and their applications.

Section I						
Module No.	Content	Hours	Weightage in %			
1.	Introduction Force and Couple, Condition of Static Equilibrium, Free body diagrams, Analysis of Mechanism	02	05			
2.	Dynamic Force Analysis D'Alembert Principal, Inertia Force, Dynamic analysis of Four bar Mechanism, Analysis of floating link, Method of virtual work, Turning Moment diagrams, Fluctuation of energy, Flywheel	12	30			
3.	Balancing Need of balancing, Static balancing, Balancing of static masses in same and different planes, Dynamic Balancing, Balancing of reciprocating masses, Balancing of Inline, Radial and V- Engines		15			
	Section II					
Module No.	Content	Hours	Weightage in%			
1.	Vibrations - Single Degree Of Freedom Introduction, Terminologies, Classification, Undamped and damped vibration, Viscous damping, Introduction of Coulomb Damping, Forced vibrations, Magnification Factor, Vibration Isolation and Transmissibility	08	20			

2.	Transverse And Torsional Vibrations	08	20
----	-------------------------------------	----	----

	Longitudinal and transverse vibrations, Whirling of shaft with and		
	without damping, Dunkerley 's method for simply supported beams		
	Torsional Vibrations, Single; Two and Three rotor systems, Free		
	vibration of gears systems		
	Mechanism For Controls		
	Introduction, Types of Governors, Sensitivity, Hunting,		
3.	Isochronisms, Stability, Effort and Power of Governors, Controlling	06	10
	Force, Angular velocity and Acceleration, Gyroscopic couple,		
	Gyroscopic effect on naval ships, stability of an automobile		

List of Practical:

Sr No	Name of Practical	Hours
1.	Whirling of Shaft Apparatus	02
2.	Balancing of Rotors	04
3.	Governors	04
4.	Gyroscopes	02
5.	Natural frequency of longitudinal vibration of spring mass system.	04
6.	Analysis of Cam and plotting the Cam profile	04
7.	Undamped free vibration of equivalent spring mass system	02
8.	Damped vibration of equivalent spring mass system	02
9.	BI –FILAR System	02
10.	TRI-FILAR System	02
11.	Viscous Vibration	02

Text Book(s):

Title	Author/s	Publication
Theory of Machines	S S Rattan	Tata McGraw Hill
Theory of Machines	P L Ballaney	Khanna Publishers

Reference Book(s):

Title	Author/s	Publication
Theory of Machines and Mechanisms	J E Shigley	Tata McGraw Hill
Theory of Machines	V P Singh	Dhanpatrai Publications

Web Material Link(s):

• https://nptel.ac.in/courses/112101096/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

• Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.

- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3031	DYNAMICS OF MACHINERY
CO1	Summarize dynamic forces and turning moments in mechanisms
CO2	Minimize unbalance in mechanical systems by means of static and dynamic balancing.
CO3	Demonstrate longitudinal vibrations, transverse vibrations and torsional vibrations in
	single degree of freedom systems.
CO4	Determine critical speed of the shaft.
CO 5	Discover gyroscopic effect in ships and automobiles & analyze effect of governor.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1, 2
2	Dynamic Force Analysis	2, 3, 4, 5
3	Balancing	2, 3, 4, 5
4	Vibrations-Single Degree of Freedom	2, 4, 5
5	Transverse and Torsional Vibrations	2, 4, 5
6	Mechanism for Controls	2, 4, 5

Department of Mechanical Engineering

Course Code: SEME3051

Course Name: Production Technology

Prerequisite Course(s): SEME2050 - Forming & Machining Processes, SEME2110 - Casting & Joining

Processes

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Exa	aminati	on Schei	ne (Mar	·ks)			
Theory Practical Tutorial		rial Credit	The	eory	Prac	ctical	Tut	orial	Total	
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• introduce the students to the theory and mechanism of various cutting processes.

- grasp distinctive knowledge of gear forming and its generating method
- understand the usefulness of Jig & Fixtures, Presses and Press work.
- introduce students with nontraditional manufacturing techniques for shaping newer materials.

	Section I				
Module No.	Content	Hours	Weightage in %		
1.	Theory of Metal Cutting Cutting Tool Material, Types of cutting tools, Tool geometry and Force analysis. Theory of metal cutting: Orthogonal and oblique cutting, Mechanics of chip formation and types of chips produced, Chip thickness ratio, Shear plane angle and its effect, Forces, Coefficient of friction, Shear strain, Power in machining. Merchant circle diagram and its assumptions and use. Chip breakers, Tool Dynamometers, Tool wears and methods of tool failure, Tool life. Cutting fluids and their properties, Economics of machining, Machinability and its evaluation.	14	30		
2.	Thermal Aspects in Machining Sources of heat generation in machining and its effects, Temperature Measurement techniques in machining, types of cutting fluids, Functions of cutting fluid, Characteristics of cutting fluid, Application of cutting fluids, Economics of Metal Cutting Operations.	05	12		

3.	Gear and Thread Manufacturing Different types of Threads manufacturing methods, and tools involved, Different gear forming and generating methods with their special features, Gears finishing processes.	04	08		
	Section II				
Module No.	Content	Hours	Weightage in %		
1.	Press Tool Classification of presses, Classification of dies, cutting actions in dies, clearance, cutting forces, Methods of reducing cutting forces, Minimum Diameter of Piercing Center of Pressure, Blanking, Piercing, Drawing, Bending and Progressive Die design, scrap reduction, strip layout.	08	18		
2.	Jigs and Fixtures Definition, Differences between Jigs and Fixtures, Its usefulness in mass production, design principles, 3-2-1 location principle and its application to short and long cylinders, types of locators, concept of work piece control, geo metric control, dimensional control and mechanical control, Clamps, jig bushes, Jigs and fixtures for various machining operations.	06	14		
3.	Modern Machining Processes Purpose, Need and Classification, Aspects considered in selection of a process. Principle, construction, working of the following processes: Ultrasonic machining, Abrasive jet machining, Water jet machining, Chemical Machining, Electro Chemical Machining and Grinding, Electro discharge Machining, Plasma arc machining, Laser beam machining, Electron beam machining.	08	18		

List of Practical:

Sr No	Name of Practical	Hours
1.	Study of various types of cutting tools and measurement of tool geometry	04
2.	To Understand the Effect of Chosen Parameters on the type of chip produced	04
3.	Determination of chip-thickness ratio and shear plane Angle During	04
J.	Machining	0 1
4.	Measurement of cutting forces in turning using Lathe Tool Dynamometer	04
т.	under various cutting conditions	04
5.	To study the Temperature Measurement on chip tool interface	04
6.	To study and understand the effect of a suitable cutting lubricant	04
7.	Design a Jig and Fixture for given component	04
8.	To study different press and design of punch and die, also exercise on strip	02
0.	layout and center of pressure	02

Text Book(s):

Title	Author/s	Publication
A Text Book of Production Engineering	Sharma P C	S. Chand Publishers
Production Technology	R K Jain	Khanna Publication

Reference Book(s):

Title	Author/s	Publication
Production Technology	HMT	Tata McGraw Hill Pub
Metal Cutting principles	M C Shaw	Oxford University press
Fundamentals of machining and machine	Boothroyd	CRC publication
tools		
Workshop Technology Vol. II	Raghuvanshi	Dhanpat rai Pub

Web Material Link(s):

• http://nptel.iitm.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Manuf%20Proc%20II/New in dex1.html

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3051	PRODUCTION TECHNOLOGY
CO1	Understand the theory of metal cutting process, dynamometer tools, tool wear and
	economics of machining.
CO2	Explain the thermal behaviour of metal during metal cutting operation.
CO3	Apply and develop gears and threads through basic knowledge of gear and thread
	manufacturing process.
CO4	Interpret the function of the press tool and jigs and fixtures.
CO5	Interpret modern machining processes for material removal application.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Theory of Metal Cutting	1, 2, 5
2	Thermal Aspects in Machining	1, 2, 5
3	Gear and Thread Manufacturing	1, 2, 3
4	Press Tool	1, 2

5	Jigs and Fixtures	1, 2
6	Modern Machining Processes	1, 2

Department of Mechanical Engineering

Course Code: SEME3090

Course Name: Industrial Engineering Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Exa	aminati	on Schei	ne (Mai	ks)			
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide students insight into the concept of industrial engineering.
- familiarize the students with principles of work study and motion study.
- realize the importance of plant design and production planning in industries.
- enable the students to understand cost analysis and inventory management.
- understand about various Industrial Acts.

	Section I			
Module No.	Content	Hours	Weightage in %	
1.	Introduction, History; Activities and Techniques of Industrial Engineering, Concepts of Management and Organization, Departmentalization and Decentralization, Types of Organizations	03	05	
2.	Work Study & Productivity Production and Productivity, Factors influencing productivity, Measurement of Productivity (Productivity Index), Work Content, Excess work and Ineffective Time, Method Study – Objective, Steps, Selection of job, Process Charts, Micro and Memo motion study, Work Measurement – Objectives, Steps, Techniques, Performance Rating, Allowance of Standard time, Techniques of work measurement, Work Sampling – Confidence level, Methods of work sampling, Computation of machine utilization and standard time, Predetermined Motion and Time Study (PMTS), Method Time Measurement (MTM)	14	30	
3.	Economics of Plant Layout And Location Plant Location, Factors affecting Plant Layout, Importance and Principles of Plant Layouts, Types of Layout - Product or Line Layout, Process or Functional Layout, Fixed Position Layout, Travel Chart.	05	15	
	Section II			

Module No.	Content	Hours	Weightage in %
INO.	Cost And Prook Evon Analysis		111 %0
1.	Cost And Break Even Analysis Cost of Production, Classification of Cost, Analysis of Production Cost, Break Even Analysis – Graphical and Mathematical and Break Even Point, Applications of Break Even Chart and Break Even Analysis, Determination of Material Cost, Labour Cost, Expenses, Over Head Expenses, Methods and procedure of job evaluation, merit rating and wage incentive plans - Problems	08	20
2.	Production Planning And Control (PPC) Types of Production, Production Cycle - Process Planning, Forecasting, Loading, Scheduling, Dispatching, Routine. Material Planning, ABC Analysis, Incoming Material Control, Kanban System, MRP System, Master Production Schedule, Bill of Materials, MRP Calculations	11	25
3.	Industrial Acts Need for Industrial acts, Factories act 1948, Industrial dispute act 1947, The Indian trade unions act 1926, Industrial employment act 1946, Payment of wage act 1936, Workmen compensation act 1923, Payment of bonus act 1965, Employees provident fund scheme 1952	04	05

Text Book(s):

Title	Author/s	Publication
Industrial Engineering and Production Management	M. Mahajan	Dhanpat Rai & Sons.
Industrial Engineering and Production Management	M. Telsung	S. Chand & Co.

Reference Book(s):

Title	Author/s	Publication
Industrial Engineering and Operational Management	S. K. Sharma	S. K. Kataria & Sons
muusutat Engineering and Operational Management	Savita Sharma	3. K. Kataria & 30115

Web Material Link(s):

https://nptel.ac.in/courses/112107142/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3090	INDUSTRIAL ENGINEERING	
CO 1	Express concepts of industrial engineering & apply work and motion management	
	techniques in industries.	
CO 2	Describe location decision, site selection and plant layout	
CO 3	Analyse cost of production & demonstrate wage and incentive plans.	
CO 4	Solve forecasting problem by applying different techniques.	
CO 5	Understand industrial legislation.	

CO 6	Express concepts of industrial engineering	& apply work and motion management
	techniques in industries.	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Industrial Engineering	1, 2
2	Work Study & Productivity	1, 2
3	Economics of Plant Layout and Location	1, 2
4	Cost and Break Even Analysis	1, 2, 5
5	Production Planning and Control (CPC)	1, 2, 5
6	Industrial Acts	1, 2

Department of Mechanical Engineering

Course Code: SEME3910

Course Name: Summer Training Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory Practical		ractical Tutorial Cre	orial Credit	Theory		Practical		Tutorial		Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
04		04	00	00	100	00	00	00	100	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- have first-hand experience the real time situations in industrial scenario.
- get familiar with engineering applications in industrial spectrum
- learn to adapt themselves in professional scenario

Outline of the Course:

Sr. No	Content
1.	Selection of Companies
2.	Company Information collection
3.	Report Writing
4.	Presentation & Question-Answer

Course Evaluation:

Sr. No.	Evaluation criteria	Marks
1	Actual work carried & Report Submission	50
2	Final Presentation & Question-Answer session	50
	Grand Total:	100

Report Writing Guidelines

A. Report Format:

1. Title Page (to be provided by the respective supervisor)

The title page of the project shall give the following information in the order listed:

- Full title of the project as approved by the Mentor;
- The full name of the student/Group of students with enrollment number;
- The qualification for which the project is submitted;
- The name of the institution to which the project is submitted;
- The month and year of submission.
- 2. Project Certification Form

[The form should be duly filled signed by the supervisors.]

3. Acknowledgements

[All persons (e.g. supervisor, technician, friends, and relatives) and organization/authorities who/which have helped in the preparation of the report shall be acknowledged.]

- 4. Table of Contents/Index with page numbering
- 5. List of Tables, Figures, Schemes
- 6. Summary/abstract of the report.
- 7. Introduction/Objectives of the identified problem
- 8. Data Analysis and Finding of Solution
- 9. Application of the identified solution
- 10. Future Scope of enhancement of the Project and Conclusion
- 11. "Learning during Project Work", i.e. "Experience of Journey during Project Duration"
- 12. References(must)
- 13. Bibliography
- 14. Annexures (if any)

B. Guideline for Report Formatting:

- Use A4 size page with 1" margin all sides
- Header should include Project title and footer should contain page number and enrollment numbers
- Chapter Name should be of Cambria font, 20 points, Bold
- Main Heading should be of Cambria font, 14 points, Bold
- Sub Heading should be of Cambria font, 12 points, Bold
- Sub Heading of sub heading should be of Cambria font, 12 points, Bold, Italic
- Paragraph should be of Cambria font, 12 points, no margin at the start of the paragraph
- Line spacing for all content 1.15, before 0, after 0
- No chapter number for references
- Before chapter 1, give page numbers in roman letter

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3910	SUMMER TRAINING
CO1	Construct company profile by compiling brief history, management structure,
	products/services offered, key achievements and market performance for the company
	visited during internship.
CO2	Determine the challenges and future potential for his/her internship organization in
	particular and the sector in general.
CO3	Test the theoretical learning in practical situations by accomplishing the tasks assigned
	during the internship period.
CO4	Apply various soft skills such as time management, positive attitude and communication
	skills during performance of the tasks assigned in internship organization.
CO5	Analyze the functioning of internship organization and recommend changes for
	improvement in processes.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Selection of Companies	1, 2, 5
2	Company Information collection	1, 2, 5
3	Report Writing	1, 2, 3
4	Presentation & Question-Answer	1, 2

Department of Mechanical Engineering

Course Code: SEME3140

Course Name: Design of Machine Elements

Pre requisite Course: -- SEME3031 – Dynamics of Machinery, SEME2081 – Kinematics of Machinery

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory Practical T		Tutorial Credit	The	eory	Prac	ctical	Tut	orial	Total	
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	01	04	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand design consideration and material selection for particular applications.
- learn design methodology/procedure for machine elements.
- Understand standards of materials designation and machine elements.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction Process of Design, Framework of Design, Designing Methods,	04	09
	Concurrent Engineering		
2.	Design Analysis Types of Loads, Types of Stresses, Types of Failures, Factor of Safety, Theory of failure, Fatigue failure analysis, Soderberg, Gerber and Goodman Criteria, Estimation of life of components, Introduction to creep and wear failure	07	16
3.	Material Selection Selection of material, Factors affecting material selection, Ferrous and Non Ferrous metals and alloys, Plastics, BIS designation system for steels	05	12
4.	Design of Springs Types, Terminologies and Types of ends in helical springs, Stress and Deflection Equations, Correction Factors, Design of helical spring against static and fluctuating loads, Multileaf spring: Terminologies, Nipping and Design	06	14

	Section II					
Module No.	Content	Hours	Weightage In %			
1.	Design of Shafts and Keys Types of Shafts, ASME code for shaft design, Design of shaft, Types of Keys, Design of Keys	07	16			
2.	Design of Screw And Threaded Fastness Types of threads, Terminologies and Design of Power Screw, Design of Screw and Nut, Design of Screw Jack, Types of Screw Fastening, Bolt of uniform strength, ISO Metric screw threads	06	13			
3.	Design of Joints Design of Cotter and Knuckle Joints, Strength of welded joints, Strength of riveted joints, Efficiency of Joints	06	13			
4.	Belt Drives and Brakes Brakes, Energy Equations, Block Brake with Short and Long Shoe, Band and Disc Brake, Selection of Flat belts from manufacturer 's catalogue, Selection of V-Belts	04	08			

List of Tutorial:

Sr No	Name of Tutorial	Hours
1.	Design consideration and Material selection	01
2.	Design Analysis against static and fluctuating loads.	01
3.	Design of Cotter Joints	01
4.	Design of Knuckle Joints	01
5.	Design of Helical Springs	02
6.	Design of Multileaf Springs	02
7.	Design of Power Screw	01
8.	Design of Screw Jack	02
9.	Design of Shafts	02
10.	Design of Keys	01
11.	Design of Belt Drives	01

Text Book(s):

Title	Author/s	Publication
Design of Machine Elements	V B Bhandari	McGraw Hill Eduction
Mechanical Engineering Design	Joseph Shigley	McGraw Hill Eduction

Reference Book(s):

Title	Author/s	Publication
Design Data Book		PSG College of Technology
Fundamental of Machine Components Design	R C Junival	John Wiley Publication

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Tutorial which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3140	DESIGN OF MACHINE ELEMENTS	
CO 1	Describe the design process, designing methods and selection of proper material for	
	design of machine element.	
CO 2	Analyze forces acting on machine elements under static and cyclic loading conditions.	
CO 3	Determine forces and stresses acting on machine elements like springs, shaft, screw,	
	threaded fasteners, belt drives and brakes.	
CO 4	Design the temporary and permanent joints required to assemble the machine elements.	
CO 5	Design and dissect mechanisms for strength and improve their life.	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1, 2
2	Design Analysis	1, 2, 4
3	Material Selection	1, 2, 4
4	Design of Springs	1, 2, 3, 4, 5
5	Design of Shafts and Keys	1, 2, 3, 4, 5
6	Design of Screw and Threaded Fasteners	1, 2, 3, 4, 5
7	Design of Joints	1, 2, 3, 4, 5
8	Belt Drives and Brakes	1, 2, 5

Department of Mechanical Engineering

Course Code: SEME3121

Course Name: Internal Combustion Engines

Pre requisite Course: -- SEME2011 - Engineering Thermodynamics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Scher	ne (Mar	·ks)		
Theory	Practical Tutorial		Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02	02	00	03	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• understand basics of IC engine and emission control.

• Examine the performance parameters of IC engines.

• Inspect the rating and testing performance of IC engines.

• Justify the alternative fuels for IC engine.

	Section I				
Module No.	Content	Hours	Weightage in %		
5.	Introduction Comparison of SI and CI Engines, Difference in thermodynamic and operating variables, comparison of performance characteristics, comparison of initial and maintenance costs application of SI and CI engine.	04	09		
6.	Fuel and its Supply System for SI and CI Engine Important qualities of IC engine fuels, rating of fuels, Carburetion, mixture requirement for different loads and speeds, simple carburetor and its working, types of carburetors, MPFI, types of injection systems in CI engine, fuel pumps and injectors, types of nozzles, spray formation.	07	16		
7.	Combustion in SI and CI Engines Combustion equations, calculations of air requirement in I C Engine, stoichiometric air fuel ratio, proximate and ultimate analysis, enthalpy of formation, adiabatic flame temperature. Stages of combustion in SI engines, abnormal combustion and knocking in SI engines, factors affecting knocking, effects of knocking, control of knocking, combustion chambers for SI engines, Stages of combustion in CI engines, detonation in C.I. engines, factors affecting detonation, controlling detonation,	05	12		

	combustion chamber for SI and CI engine.			
	Engine Lubrication			
	Types of lubricants and their properties, SAE rating of			
	lubricants, Types of lubrication systems.			
	Engine Cooling			
8.	Necessity of engine cooling, disadvantages of overcooling,	06	14	
0.	Cooling systems and their comparison: Air cooling, Liquid	00	14	
	cooling.			
	Supercharging/ Turbo-Charging			
	Objectives, Limitations, Methods and Types, Different			
	arrangements of turbochargers and superchargers.			

	Section II		
Module No.	Content	Hours	Weightage In %
	Rating, Testing and Performance		
5.	Measurements of speed, air flow, fuel consumption, indicated power brake power, frictional horse power, and smoke, testing of engines as per Indian Standard 10001, performance test for variable speed I C Engines, heat balance sheet, governing test for constant speed IC engines, effect of fuel injection parameters in CI engines and ignition advance of SI engines on performance of engine. Rating of internal combustion engine based on (I) continuous operation of engine (II) Maximum power an engine can develop (III) Power calculated from empirical formula, Trouble Shooting and Overhauling of Engines.	07	16
6.	Emission of IC Engine Emission from SI engine, effect of engine maintenance on exhaust emission control of SI engine, diesel emission, diesel smoke and control, diesel and control comparison of gasoline and diesel emission. Measurement and calculation for of emission constituents.	06	13
7.	Unconventional Engines & Alternative Fuels for IC Engine Working principle of stratified charge engines sterling engine, Wankel engine Methanol, Ethanol, vegetable oils, bio gas, bio- fuels, hydrogen and comparison of their properties with Diesel and petrol.	06	13

List of Tutorial:

Sr No	Name of Tutorial	Hours
1	To demonstrate various engines and their components.	02
2	Demonstration of valve timing diagram.	04
3	To demonstrate about the fuel injection system for C.I. Engine.	04
4	To demonstrate about carburetor and its types.	04
5	To carry out the performance analysis of single cylinder two stroke petrol	04
J	engine.	0 1
6	To carry out the performance analysis of multi cylinder four stroke petrol	04
	engine.	0 1
7	To carry out the performance analysis of multi cylinder four stroke diesel	04
,	engine.	0.1
8	To carry out various Performance tests: Morse Test and William Line Plot.	04

Text Book(s):

Title	Author/s	Publication
IC Engine	Heywood	-
IC Engines	Marthur & Sharma	Dhanpatrai Publication

Reference Book(s):

Title	Author/s	Publication	

IC Engines	V.Ganeshan	Tata McGraw Hill
IC Engine	Domkundwar &	Dhanpatrai Publication
	Domkundwar	
IC Engine	R.K. Rajput	Laxmipublication

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Tutorial which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3121	INTERNAL COMBUSTION ENGINES	
CO 1	Describe and explain the major phenomena going on in an internal combustion engine	
	such as gas exchange, combustion and emissions formation/reduction.	
CO 2	Explain the performance and evaluation of internal combustion engine and to discuss	
	how this is affected.	
CO 3	Reflect on the role of internal combustion engines for transports in society as well as the	
	emissions issue from both a sustainable and ethical perspective.	
CO 4	Understand and explain about the alternative fuels and their properties	
CO 5	Explain the latest development of unconventional engines.	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1, 2
2	Fuels and its supply system for SI and CI engine	1, 2
3	Combustion in SI and CI engines	1, 2, 4, 5
4	Engine lubrication, Engine cooling, and Supercharging/ Turbo-	1, 2, 3
	Charging	
5	Rating, Testing and Performance	1, 2, 3, 4, 5
6	Emission of IC Engine	1, 2, 3, 4, 5
7	Unconventional Engines & Alternative Fuels for IC Engine	1, 2, 3

Department of Mechanical Engineering

Course Code: SEME3080

Course Name: Computer Aided Design and Manufacturing

Prerequisite Course(s): -- SEME2090 – Software Tools for Mechanical Engineers

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory Prac	Practical	Tutorial	utorial Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• understand the basic aspects of CAD/CAM.

- gain exposure over the concepts of computer graphics.
- learn geometric modelling and issues in manufacturing.
- develop strong skill of writing CNC programs.
- educate students to understand different advances in manufacturing system like: GT, FMS and RP.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Fundamental of CAD Application of computer for design, Product Cycle and CAD-CAM, Graphics input-output devices, Concept of Coordinate Systems: Working Coordinate System, Model Coordinate System, Screen Coordinate System, Graphics exchange standards - Neutral file formats – IGES, STEP	04	05					
2.	Principles of computer Graphics Introduction to Computer graphics, Scan conversions and Algorithm for generation - DDA, Bresenham's algorithms., 2D and 3D Transformation - Translation, Scaling, Reflection, Rotation, Shearing	08	15					
3.	Geometric Modeling Representation of curves and surfaces, Geometric modeling techniques, Wireframe modeling, Surface Modeling and Solid Modeling, Feature based Parametric and Variation modeling.	08	15					
4.	Finite Element Analysis Design and analysis and Historical background, Stresses and	10	15					

	equilibrium, Boundary conditions, Strain-Displacement relations, Plane stress and plane strain cases, Concept of Raleigh-Ritz and Galerkin's methods, Review of matrix algebra, Generalized procedure for Finite element analysis, Types of elements and Finite element modeling, Coordinates and shape functions, Design problems of structural analysis, Applications		
	and capabilities of various software for FEA. Section II		
Module No.	Content	Hours	Weightage in %
1.	CNC Machine Tools Introduction to NC, CNC, DNC, Manual Part programming, Computer assisted part programming, Components of NC/CNC system, Specification of CNC system, Classification of NC/CNC Machine tools, Nomenclature of NC machine axes, CNC Control System, CNC Programming, Automatic tool changer, Automatic Pallet Changer, Machine tool structure, Guideways, Transmission system, Drives and Feedback Devices, NC/CNC tooling, Canned cycles and subroutines, APT language, Machining from 3D models.	18	30
2.	Introduction to Group Technology, FMS and Rapid Prototyping Objectives, part families, similarities, design and Manufacturing attributes, Classification methods- visual inspection, product flow analysis and coding, G.T. machine cells and types, concept of composite part, benefits and limitations, Flexible Manufacturing system (FMS) – Concept, objectives, applications, classification, FMS layouts, specifications, benefits, limitations, FMS planning and implementation issues, Fundamentals of Rapid Prototyping, Advantages and Applications of RP Types of Rapid Prototyping Systems	08	15
3.	Computer Integrated Manufacturing Basic information of CIMS, hardware and software requirement for CIMS, benefits, scope and Needs, CIMS wheel, elements of CIMS and their role, Fundamentals of communication, data base management	04	05

List of Practical:

Sr No	Name of Practical	Hours
1.	Prepare a programme for plotting lines and curves using algorithms learned	02
2.	Demonstration of 3D modeling using CAD Packages	04
3.	Demonstration of stress analysis using FEA package	06
4.	Part Programming using G and M code: Lathe and Milling jobs	04
5.	Simulation of part programme	06
6.	CNC code generation using any CAM software	04
7.	Problems on Group Technology and Industrial case problems on coding	02
8.	Study of Expert System in Manufacturing and MIS	02

Text Book(s):

Title	Author/s	Publication
CAD, CAM and CIM	Radhakrishan P. and	New Age International
	Subramaniyam S.	_
Numerical control and computer aided	Kundra T. K., Rao P. N.	Tata McGraw Hill
manufacturing	and Tewari N. K.	Publishing company Ltd.

Reference Book(s):

Title	Author/s	Publication
CAD / CAM: Theory and Practice	Ibrahim Zied,	Tata McGraw Hill Publishing
		company Ltd.
CAD/CAM	Rao P. N.	Tata McGraw Hill Publishing
		company Ltd.
Computer numerical control	Radhakrishnan P	New Central Book Agency
machines		
CAD/CAM Computer Aided Design	M. P. Groover, E. W.	Prentice Hall of India, New Delhi.
and Manufacturing	Zimmers	
CNC Programming handbook	Peter Smid	Industrial Press Inc, New York

Web Material Link(s):

- http://help.autodesk.com/view/fusion360/ENU/
- https://academy.autodesk.com/course/83871/essentials-cam
- https://www.autodesk.com/products/fusion-360/blog/getting-started-introduction-to-cam-and-toolpaths/
- https://knowledge.autodesk.com/support/fusion360/learnexplore/caas/CloudHelp/cloudhelp/ENU/Fusion-GetStarted/files/GUID-A93F8BAB-1B3B-457F9265-AFD16D8B732A-htm.html

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3080	COMPUTER AIDED DESIGN & MANUFACTURING
CO 1	Apply algorithms of graphical entity generation.
CO 2	Construct a mathematical model of geometrical modelling and transformation
CO 3	Formulate finite element model for analysis of simple components.
CO 4	Develop programs related to manufacturing using cnc codes

CO 5	Classify different components using different techniques of group technology.
------	---

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Fundamental of CAD	1, 2, 3
2	Principles of Computer Graphics	1, 2, 3
3	Geometric Modeling	1, 2, 3, 6
4	Finite Element Analysis	1, 2, 3, 4, 6
5	CNC Machine Tools	1, 2
6	Introduction to Group Technology, FMS and Rapid Prototyping	1, 2. 3
7	Computer Integrated Manufacturing	1, 2

Department of Mechanical Engineering

Course Code: SEME3130 Course Name: HVAC Systems

Prerequisite Course(s): - SEME2011 - Engineering Thermodynamics, SEME3111 - Heat & Mass

Transfer

Teaching & Examination Scheme:

	Teaching So (Hours/W			Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit		eory		ctical		orial	Total
				CE	ESE	CE	ESE	CE	ESE	
02	02	00	03	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Clarify the concepts of refrigeration and air-conditioning.
- Explore the different types of refrigeration and air conditioning systems.
- Selection of refrigerant under different condition with application and properties.
- Elaborate the various Psychrometric Processes and its applications.
- Estimate load calculation for air conditioning for buildings.

	Section I						
Module No.	Contents	Hours	Weightage in %				
1.	Fundamentals of Refrigeration: Methods of producing cooling, ton of refrigeration, coefficient of performance, types and application of refrigeration, Classification of refrigerant, nomenclature, desirable properties of refrigerant, secondary refrigerants, future industrial refrigerants, VCR System, P – h and T – s Diagrams, analysis of simple cycle, actual cycle.	06					
2.	Psychrometry:	06					
	Dalton's law of partial pressure, Properties of moist air, temperature and humidity measuring instruments, psychrometric chart, psychrometric processes such as sensible heating and cooling, heating and humidification cooling and dehumidification, chemical dehumidification, adiabatic saturation						
3.	Air Conditioning Systems:	03					
	Classification, system components, all air; all water; and airwater systems, room air conditioners, packaged air						

	conditioning plant, central air conditioning systems, split air		
	conditioning systems		
	Section II		
4.	Duct Design and Air Distribution:		
	Function; classification and economic factors influencing duct layout, equal friction, velocity reduction and static regain methods of duct design, use of friction chart, dynamic losses and its determination, Requirements of air distribution	06	
5.	system, air distribution, grills, outlets, application, location		
J.	Load Analysis: Site survey, outdoor and indoor design conditions, classification of loads, flywheel effect of building material and its use in design, effect of wall construction on cooling load, instantaneous heat gain (IHG) and instantaneous cooling load (ICL) heat transmission through sunlit and shaded glass using tables, method of reduction of solar heat gain through glass, calculations of cooling load TETD due to sunlit and shaded roof and walls using tables, ventilation and air infiltration, load due to outside air, heat gain from occupants; electric lights; product; electric motor and appliances, load calculations for automobiles, use of load estimation sheet.	06	
6.	Vapour Absorption Refrigeration Cycle: Desirable characteristics of refrigerant, selection of pair, practical H ₂ O -NH ₃ cycle, LiBr – H ₂ O system and its working, Electrolux refrigeration system	03	

List of Practical:

Sr.	Name of Practical	Hours
No.		
1.	Performance Test of VCR System	02
2.	Performance Test of VAR System	02
3.	Performance test on Recirculating Type Air Conditioning Dust to learn various Psychrometric Processes.	04
4.	To understand various tools used for refrigeration tubing and to perform various operations like flaring, swaging, bending, brazing etc.	02
5.	To calculate cooling load of a confined space using table and compare the same with load estimation sheet.	04
6.	To design duct layout of the confined space selected for above.	04
7.	Performance Test of Sling Psychrometer to determine DBT & WBT.	02
8.	Performance test on heat pump test rig.	04

Text Book(s):

Title	Author(s)	Publication
Refrigeration & Air Conditioning	C P Arora	McGraw Hill India Publishing House
Refrigeration & Air Conditioning	R K Rajput	S Chand and Co

Reference Book(s):

Title	Author(s)	Publication
Refrigeration & Air Conditioning	Ramesh Arora	Prentice Hall of India

Course Evaluation:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical/Tutorial which will be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 10 Marks.
- Internal Viva consists of 10 Marks.
- Practical performance/quiz/drawing/test will consist of 15 Marks during End Semester Exam.
- Viva/Oral performance will consist of 15 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3130	HVAC Systems			
CO 1	Select proper refrigerant for various applications and make basic calculations of VCR			
	System.			
CO 2	Explore construction and working of different Air Conditioning systems.			
CO 3	Estimate Air Conditioning Load Calculation for buildings.			
CO 4	Select proper air-conditioning system for various applications and construct duct layout			
	for the systems.			
CO 5	Understand various Psychrometric Processes and Its applications.			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Fundamentals of Refrigeration	1,2,3,4
2	Psychrometry	1,2,3
3	Air Conditioning Systems	1,2,3
4	Duct Design and Air Distribution	1,2,3,4,5
5	Load Analysis	1,2,3,4,5,6
6	Vapour Absorption Systems	1,2

Department of Mechanical Engineering

Course Code: SEME3101

Course Name: Power Plant Engineering

Prerequisite Course(s): SEME2011-Engineering Thermodynamics, SEME3111 – Heat & Mass Transfer

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Mar	ks)		
ſ	Theory	Practical	Tutorial	Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
	THEOTY	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	03	00	01	04	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify which are the different power plants in operation with fundamentals various power generation units.
- interpret economics of power generation and country's energy hunger and potential.
- understand different power plant units like Steam based, gas-based power plants, Hydro and Nuclear power plants.
- explore power plants based on renewable resources like Solar, Wind, Geothermal, Tidal.

Section I					
Module. No.	Content	Hours	Weightage in %		
1.	Thermal Power Plant General Layout of modern power plant, Site selection, Present status of power generation in India.	03	07		
2.	Economics of Power Generation Load duration curves, Connected load, Maximum load, Peak load, Base load and peak load power plants, Load factor, Plant capacity factor, Plant use factor, Demand factor, Diversity factor, Cost of power plant, Performance and operating characteristics of power plant, Tariff for electric energy.	08	18		
3.	High Pressure Steam Generators Unique features and advantages, La-Mont; Benson; Velox, Loeffler and Schmidt-Hartmann boilers, Supercritical, Positive circulation, Fluidized bed combustion.	05	12		
4.	Coal and Ash handling Systems Coal handling and preparation, Combustion equipment and firing methods, Pulverized mills, Mechanical Stokers, Pulverized coal firing systems, Cyclone Furnace, Necessity of Ash disposal, Ash handling systems, Dust collection and its disposal, Mechanical	06	13		

	Dust Collector, Electrostatic precipitator.					
	Section II					
Module. No.	Content	Hours	Weightage in %			
1.	Draught System Natural draught – Estimation of height of chimney, Maximum discharge condition, Forced; induced and balanced draught, Power requirement by fans	04	08			
2.	Nuclear and Hydro Power Plant Principal of Nuclear energy, Nuclear fission and chain reaction, types of reactors, Boiling water reactor, Pressurised water reactor, Pressurised Heavy water reactor, CANDU reactor Gas cooled reactor, fast breeder reactor, Classification of Hydro- electric power plants and their applications.	08	17			
3.	Feed Water Treatments Internal & external water treatment systems – Hot lime soda process, Zeolite ion exchange process, Demineralization plants, Reverse osmosis process, Sea water treatment using reverse osmosis, De-aeration	05	12			
4.	Condensers and Cooling Tower Types of Condensers, Condenser Efficiency, Mass of cooling water required, Terminology of Cooling tower, Types of cooling tower and cooling ponds	06	13			

List of Tutorial:

Sr. No.	Name of Tutorial	Hours
1.	To solve the numerical based on Economics of power generation.	02
2.	Study the various Feed water treatment for steam generators.	
3.	3. Selection of induced and forced draft fans and height of chimney.	
4.	A case study of Nuclear Power Plant.	02
5.	To understand India's 3-Stage Nuclear Programme and nuclear power plants in India.	02
6.	To Study various types of condenser and cooling towers.	02
7.	A Case study of thermal power plant.	02
8.	Industrial visit report on Power Plant Visit.	01

Text Book (s):

Title	Author/s	Publication
Power Plant Engineering 4e	P.K. Nag	McGraw-Hill Education

Reference Book(s):

Title	Author/s	Publication		
A Course in Power Plant Engineering	S. C Arora and S.	Dhanpat Rai & Co.		
	Domkundwar			
A Text Book of Power Plant	R. K. Rajput	Laxmi Publications (P)		
Engineering	, -	Ltd.		
Power Plant Technology	M.M. El-Wakil	McGraw-Hill Education		

Web Material Link(s):

• https://nptel.ac.in/courses/112107216/ (Review of Thermodynamics)

- https://nptel.ac.in/courses/108105058/8 (Thermal Power Plants)
- https://nptel.ac.in/courses/112106133/15 (Capacity of Steam Power Plant)

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 Marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Model Preparation task consists of 10 marks.
- Internal Viva consists of 10 marks.
- Viva/Oral Performance of 30 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3101	POWER PLANT ENGINEERING
CO 1	Interpret different parameters associated with power generation and supply.
CO 2	Define the role of various power plants for fulfilment of energy requirement of country.
CO 3	Identify the india's 3 stage nuclear programme and current power generation by nuclear
	plants.
CO 4	Understand various components and requirements of different power plants.
CO 5	Explore various coal & ash handling systems and feed water treatments.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Thermal Power Plant	1, 2
2	Economics of Power Generation	1, 2, 3
3	High Pressure Steam Generators	1, 2, 3
4	Coal and Ash Handling Systems	1, 2
5	Draught System	1, 2, 3
6	Nuclear and Hydro Power Plant	1, 2
7	Feed Water Treatments	1, 2
8	Condenser and Cooling Tower	1, 2, 3

FOURTH YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. MECHANICAL PROGRAMME AY:2021-22

					Teach	ing Schem	e		Examination Scheme						
Sem	Course	Course Title	Offered		Contact 1	Hours			The	ory	Practical		Tutorial		1
Sem	Code	course ride	Ву	Theory	Practical	Tutorial	Total	Credit	CE	ES E	CE	ESE	СЕ	ESE	Total
	SEME4011	Control Engineering	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME4021	Renewable Energy Sources & Systems	ME	3	2	0	5	4	40	60	20	30	0	0	150
	SEME4031	Design of Power Transmission Elements	ME	3	0	1	4	4	40	60	0	0	20	30	150
7	SEME4040	Operations Research	ME	3	0	1	4	4	40	60	0	0	50	0	150
	SEPD4010	Creativity, Problem Solving & Innovation	SEPD	3	0	0	3	3	100	0	0	0	0	0	100
	SEME4910	Project/Summer Internship	ME		4		0	4	40	60	0	0	100	0	0
		Elective-II	ME	2	2	0	4	3	40	60	20	30	0	0	150
						Total	23	25							900
	SEME4920	Project/Training	ME		24		24	24	0	0	200	300	0	0	500
8						Total	24	24							500

				ELECT	IVE-II COUR	SES									
					Teach	ing Schem	e			I	Exami	natior	Sch	eme	
Sem	Course	Course Title	Offered		Contact 1	Hours			The	ory	Prac	ctical	Tut	orial	
Code	Code	Course Title	Ву	Theory	Practical	Tutorial	Total	Credit	CE	ES E	CE	ESE	CE	ESE	Total
	SEME3512	Advanced Manufacturing Technology	ME	2	2	0	4	3	40	60	20	30	0	0	150
	SEME3551	Electrical Technology	ME	2	2	0	4	3	40	60	20	30	0	0	150
	SEME3521	Applied Thermodynamics	ME	2	2	0	4	3	40	60	20	30	0	0	150
_	SEME3631	Automobile Engineering	ME	2	2	0	4	3	40	60	20	30	0	0	150
7	SEME3650	Quality Engineering & Reliability	ME	2	2	0	4	3	40	60	20	30	0	0	150
	SEME4521	Tools Design	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME4511	Design of Heat Exchangers	ME	2	2	0	4	3	40	60	20	30	0	0	150
	SEME4530	AI in Manufacturing	ME	2	2	0	4	3	40	60	20	30	0	0	150
	SEME4540	Industry 4.0 & IoT	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME3512	Advanced Manufacturing Technology	ME	2	2	0	4	3	40	60	20	30	0	0	150

Department of Mechanical Engineering

Course Code: SEME4011

Course Name: Control Engineering

Prerequisite Course(s): SESH2211- Basics of Electrical & Electronics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Described Testonial Con		I Totavial Condit		eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- develop the mathematical model of the physical systems.
- analyze the response of the closed and open loop systems.
- analyze the stability of the closed and open loop systems.
- design the various kinds of compensator.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Fundamentals of Control System Basic Concepts of Control System, Classification, System Modeling, Transfer Function, Block Diagram Representation, Signal Flow Graph, Concept of Superposition for Linear Systems with Examples	08	20
2.	System Modelling Translational and Rotational Mechanical, Electrical, Thermal, Hydraulic and Pneumatic Systems, Force Voltage and Force Current Analogy, Position Servo Mechanism. Block Diagram and Signal Flow Graph Representation of Physical Systems along with Rules, Properties, Comparison and Limitation, Mason's Gain Formula	08	15
3.	Time Response and Stability Analysis Concept of Stability, Types of Stability, Routh's Stability Criterion, Special Cases with Numerical Examples, Stability of Closed Loop System, Concept of Root Locus, Open Loop and Closed Loop Transfer Poles, Step by Step Procedure for Root Loci, Numerical Examples	07	15

	Section II		
Module No.	Content	Hours	Weightage in %
1.	Frequency Response Analysis Need of Frequency Response Analysis, Sinusoidal Response of Linear System, Methods Used in Frequency Response, Frequency Domain Specifications	08	20
2.	Hydraulic Control System Basic Elements of Hydraulic Circuit, Principle Used in Hydraulic Circuit, Sources of Hydraulic Power, Integral, Derivative, PD & PID Controller With its Transfer Function, Comparison Between Hydraulic and Electrical Control System	07	15
3.	Pneumatic Control System Basic Elements of Pneumatic Circuit, Difference Between Pneumatic and Hydraulic Control Systems, Force Balance and Force Distance Type Controllers, Nozzle-Flapper Amplifier, PD, PI and PID Control System along with its Transfer Function.	07	15

Text Book(s):

i che Boon(b).		
Title	Author/s	Publication
Control System Engineering	J.Nagrath and M.Gopal	New Age International Publishers, 5th Edition, 2007
Automatic Control Systems	Farid Golnaraghi, Benjamin C Kuo,	John Wiley & Sons, Inc., 9th Edition

Reference Book(s):

Title	Author/s	Publication
Modern Control Engineering	Ogata K.	Prentice Hall India, 2003
Modern Control Systems	Richard C. Dorf, Robert H Bishop	Pearson Education International, 12th Edition.
Control System Engineering	Norman S Nise	John Wiley & Sons, Inc., 6th Edition

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical which should be evaluated out of 10 for each practical in the next turn and average of the same will be converted to 10 Marks.
- Internal Viva component of 10 Marks.
- Practical performance/quiz/drawing/test of 15 Marks during End Semester Exam.
- Viva/Oral performance of 15 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME4011	CONTROL ENGINEERING
CO1	Summarized fundamentals of control systems and components of control systems
CO2	Demonstrate the methodology for modelling mechanical, hydraulic and pneumatic
	systems for control.

CO3	Summarize various techniques related to stability analysis of a control system.
CO4	Analyze time domain and frequency domain responses of mechanical systems.
CO5	Utilization PD, PI, PID controllers for control of physical systems.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Fundamentals of Control System	1, 2
2	System Modeling	1, 2, 5, 6
3	Time Response and Stability Analysis	1, 2, 4, 5
4	Frequency Response Analysis	1, 2, 3, 4, 5
5	Hydraulic Control System	1, 2, 3, 4, 5
6	Pneumatic Control System	1, 2, 3, 4, 5

Department of Mechanical Engineering

Course Code: SEME4021

Course Name: Renewable Energy Sources & Systems Prerequisite Course(s): SEME3011-Heat Transfer

Teaching & Examination Scheme:

Teacl	Teaching Scheme (Hours/Week)				Exa	minati	on Schei	me (Ma	rks)	
Theory	Dragtigal	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify which are the different renewable energy sources available and their national scenario.
- interpret Solar energy and related terminology along with their possible applications and conversions.
- Understand wind energy and related terminology along with their conversion to produce electricity.
- explore the geothermal and ocean energy with their possible conversions.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Renewable Energy Scenario Scope for Renewable Energy, Advantages and Limitations of Renewable Resources, Present Energy Scenario of Conventional and Non- Conventional Resources, Government Policies, National Missions	04	10
2.	Energy Available from the Sun, Spectral Distribution, Sun-Earth Angles and their Relations, Measuring Techniques and Estimation of Solar Radiation Outside and the Earth's Atmosphere, Radiation on Tilted Surface Solar Power Generation Photovoltaic System for Power Generation, Types of Solar Cell Modules and Arrays, Solar Cell Types, Grid Connection, Payback Period Calculation, Advantages and Disadvantages, Site Selection and other Parameters. Solar Applications Conversion of Solar Energy In to Heat, Solar Thermal Collectors, Solar Concentrators Analysis and Performance Evaluation, Solar Energy Thermal Storage, Solar Based Devices like: Solar Pumping, Solar Cooker, Solar Still, Solar Drier, Solar Refrigeration and Air Conditioning, Solar Pond,	19	40

	Heliostat, Solar Furnace				
	Section II				
Module No.	Content	Hours	Weightage in %		
1.	Wind Energy Principle and Basics of Wind Energy Conversion, Energy Available from Wind, Basics of Lift and Drag, Effect of Density, Angle of Attack and Wind Speed Wind Power Conversion Wind Turbine Rotors, Horizontal and Vertical Axes Rotors, Drag, Lift, Torque and Power Coefficients, Tip Speed Ratio, Solidity of Turbine, Site Selection and Basics of Wind Farm, Solar-Wind Hybrid System	09	20		
2.	Bio Energy Energy from Biomass, Sources of Biomass, Different Species, Conversion Process, Advantages and Disadvantages, Properties of Biomass, Biomass Energy Biogas Generation Conversion of Biomass into Fuels, Gasification and Combustion, Aerobic and Anaerobic Bio-Conversion, Types of Biogas Plants, Design and Operation, Factors Affecting Biogas Generation, Gasification, Types and Applications of Gasifiers	07	15		
3.	Geothermal energy Availability, Vapor and Liquid Dominated Systems, Binary Cycle, Hot Dry Rock Resources, Magma Resources, Advantages and Disadvantages, Applications Ocean Energy Ocean Thermal Energy Conversion, Availability, Advantages and Limitations; Open, Closed and Hybrid Cycle Otec System, Wave and Tidal Energy, Estimation of Tidal Power, Tidal Power Plants, Single and Double Basin Plants, Site Requirements	06	15		

List of Practical:

Sr. No.	Name of Practical	Hours
1.	To Prepare one mathematical model using the Sun angles relations for particular any one solar application.	06
2.	Demonstration of Solar air heater, solar cooker, Solar pyranometer, Solar collector, biogas plant, gasifier.	06
3.	To estimate the solar day time with the help of sunshine recorder.	02
4.	To perform efficiency test of solar water heater with its different parameters.	04
5.	To evaluate distilled water output under solar desalination system considering different water depth and day-night performance and calculation of payback period.	04
6.	To estimate the solar power generation using PV panel and estimation of Payback period.	04
7.	To calculate the wind power generation using the small wind mill.	04

Text Book (s):

Title	Author/s	Publication
Solar Energy-Fundamentals, Design,	G.N. Tiwari	Narosa Publishers

Modelling and Applications.		
Non-conventional energy resources.	Shobh Nath Singh	Pearson India
Solar Energy	S P Sukhatme, J K Nayak	McGraw Hill

Reference Book(s):

Title	Author/s	Publication	
Principles of Solar Engineering	F. Kreith and J.F. Kreider	McGraw Hill	
Color Enorgy thormal programs	J.A. Duffie and W.A.	I Wilow	
Solar Energy thermal processes	Beckman	J. Wiley	
Wind energy Theory and	Alamad	PHI, Eastern Economy Edition	
Practice	Ahmed		
Renewable Energy Sources and	Vothovi	DIII Eastorn Esonomy Edition	
Emerging Technologies	Kothari	PHI, Eastern Economy Edition	

Web Material Links:

- https://nptel.ac.in/courses/112107216/ (Review of Thermodynamics)
- https://nptel.ac.in/courses/108105058/8 (Thermal Power Plants)
- https://nptel.ac.in/courses/112106133/15 (Capacity of Steam Power Plant)

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME4021	RENEWABLE ENERGY SOURCES & SYSTEMS
CO1	Analyze the present scenario of conventional and non conventional energy in
	india.
CO2	Estimate the application of solar energy to develope different solar based devices
	in use.
CO3	Understand basics of wind energy and its use for power generation.
CO4	Relate the generation of biogas through different biogas plant and gasifier.
CO5	Recognize the basics of ocean, geothermal, tidal & wave energy based power
	plants.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Renewable Energy Scenario	1, 2
2	Solar Energy, Solar Power Generation, Solar	1, 2, 3
	Applications	
3	Wind Energy and Wind Power Generation	1, 2, 3
4	Bio Energy and Biogas Generation	1, 2, 4
5	Geothermal energy and Ocean Energy	1, 2

Department of Mechanical Engineering

Course Code: SEME4031

Course Name: Design of Power Transmission Elements

Prerequisite Course(s): SEME3060-Design of Basic Machine Elements

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Dragtical	Tutorial	Turkanial Condit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	01	04	40	60	00	00	20	30	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn the basics of various transmission elements involved in mechanical power transmission.
- identify various forces and its effect on power transmission.
- impart the ability for selection of proper power transmission system as per requirement.
- understand the standard data catalogue for various power transmission drives.

	Section I								
Module No.	Content	Hours	Weightage in %						
1.	Introduction to Design Terminologies, Stress, Strain, Types of Forces, Various Transmission Drives, Design	02	05						
2.	Design of Flexible Elements Design of Flat Belts and Pulleys, Selection of V Belts and Pulleys, Selection of Hoisting Wire Ropes, Design of Transmission Chains and Sprockets	06	13						
3.	Bearings Sliding Contact Bearings- Types of Journal Bearing, Load Carrying Capacity, Methods of Lubrication, Hydrodynamic Bearing, Performance of Bearing, Mckee's Equation, Heat Dissipation and Power Loss, Summerfield Number. Rolling Contact Bearing- Types, Bearing Designation (SKF and BIS), Static Load carrying Capacity, Life of Bearing, Basic Load Rating.	07	16						
4.	Cams, Clutches and Brakes Cam Design: Types, Pressure Angle and Under Cutting Base Circle Determination, Design of Plate Clutches, Axial Clutches, Cone Clutches, Band and Block Brakes, External Shoe Brakes, Internal Expanding Shoe Brake	07	16						
M. J. J.	Section II	<u> </u>	YAY . T. l						
Module No.	Content	Hours	Weightage in %						
1.	Spur Gears and Parallel Axis Helical Gears	09	20						

	Gear Terminology, Speed Ratios and Number of Teeth, Force Analysis Tooth Stresses, Dynamic Effects, Fatigue Strength, Factor of Safety, Gear Materials, Module and Face Width, Power Rating Calculations Based on Strength and Wear Considerations Parallel Axis Helical Gears – Pressure Angle in the Normal and Transverse Plane - Equivalent Number of Teeth, Forces and Stresses		
2.	Bevel, Worm and Cross Helical Gears Straight Bevel Gear: Tooth Terminology, Tooth Forces and Stresses, Equivalent Number of Teeth, Estimating the Dimensions of Pair of Straight Bevel Gears. Worm Gear: Merits and Demerits, Terminology. Thermal Capacity, Materials, Forces and Stresses, Efficiency, Estimating the Size of the Worm Gear Pair. Cross Helical: Terminology - Helix Angles -Estimating the Size of the Pair of Cross Helical Gears	08	17
3.	Geartrains Geometric Progression, Standard Step Ratio, Design of Sliding Mesh Gear Box, Design of Multi Speed Gear Box, Types of Gear Trains, Simple Gear Trains, Compound Gear Train, Reverted Gear Train, Epicyclic Gear Train	06	13

List of Tutorials:

Dist of 1 deorads.						
Sr. No.	Name of Tutorial	Hours				
1.	Design of Flat belt and selection of V belt	02				
2.	Standard Catalogue related to belt, Chain and Spocket	01				
3.	Design of sliding and rolling contact bearing	01				
4.	Design of single plate clutch	01				
5.	Design of brakes and cams	01				
6.	Design of spur gears	02				
7.	Design of helical gears	02				
8.	Design of bevel and worm wheel	02				
9.	Standard catalogue for spur, helical and worm gears	01				
10.	Design of Gear Trains	02				

Text Book(s):

Title	Author/s	Publication
Design of Machine Elements	V B Bhandari	McGraw Hill Eduction
Mechanical Engineering Design	Joseph Shigley	McGraw Hill Eduction

Reference Book(s):

Title	Author/s	Publication		
Machine Design	Sundararajamoorthy T. V	Anuradha Publications		
Machine Design	R S Khurmi	S Chand Publication		
Hand book of Mechanical Design	Gitin Maitra	McGraw Hill Eduction		

Web Material Links:

• https://nptel.ac.in/courses/112/106/112106137/

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Tests Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 marks.

Tutorial:

- Continuous Evaluation consists of solution of Practical which should be evaluated out of 10 for each Tutorial and average of the same will be converted to 20 Marks.
- Performance/Problem solution/quiz/test of 15 Marks during End Semester Exam.
- Viva/Oral performance of 15 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME4031	DESIGN OF POWER TRANSMISSION ELEMENTS
CO1	Select the materials for the mechanical transmission system.
CO2	Apply the design principle in designing of flexible elements, bearings, cams,
	clutches, brakes, gears and gear trains.
CO3	Estimate life of rolling element bearings and determine performance parameters
	of sliding contact bearings.
CO4	Describe the terminology of different gears and cams.
CO 5	Evaluate speed variation on gear box shafts and optimize fluctuation of shaft
	speeds in gear box.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Design	1, 2
2	Design of Flexible Elements	1, 2, 3, 4, 5
3	Bearings	1, 2, 3, 4, 5
4	Cams, Clutches and Brakes	1, 2, 4, 5
5	Spur Gears and Parallel Axis Helical Gears	1, 2, 5
6	Bevel, Worm and Cross Helical Gears	1, 2, 5
7	Geartrains	1, 2, 5

Department of Mechanical Engineering

Course Code: SEME4040

Course Name: Operations Research

Prerequisite Course(s): -- SEME3090 - Industrial Engineering

Teaching & Examination Scheme:

		8									
	Teaching Scheme (Hours/Week)				Teaching Scheme (Hours/Week) Examination Scheme (Marks)						
	Theory	Dwaatiaal	Tutorial	Cuadit	The	eory	Prac	ctical	Tute	orial	Total
	Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	03	00	01	04	40	60	00	00	50	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide students the knowledge of optimization techniques and approaches.
- enable the students apply mathematical, computational and communication skills needed for the practical utility of Operations Research.
- teach students about networking, inventory, queuing, decision and replacement models.
- introduce students to research methods and current trends in Operations Research.

	Section I								
Module No.	Content	Hours	Weightage in %						
1.	Linear Models Introduction to Operations Research - Linear Programming - Mathematical Formulation, Solution Techniques of LP: Graphical Methods, Analytical Methods: Simplex, Big M and Two Phase, Sensitivity Analysis, Primal and Dual Problems, Economic Interpretation	10	22						
2.	Transportation and Assignment Transportation Problems Definition, Linear Form, Solution Methods: North West Corner Method, Least Cost Method, Vogel's Approximation Method, Degeneracy in Transportation, Modified Distribution Method, Unbalanced Problems and Profit Maximization Problems, Transshipment Problems, Assignment Problems and Travelling Sales Man Problem	06	14						
3.	Queuing Theory Basis of Queuing Theory, Elements of Queuing Theory, Kendall's Notation, Operating Characteristics of a Queuing System, Classification of Queuing Models, Preliminary Examples of M/M/1:∞/FCFA	06	14						
75 7 7	Section II								
Module No.	Content	Hours	Weightage in %						
1.	Inventory Control	05	10						

	Inventory Models, Various Costs and Concepts EOQ, Deterministic Inventory Models, Production Models, Stochastic Inventory Models, Buffer Stock		
2.	Decision Models Game theory – Two-person Zero Sum Game, Graphic Solution - Property of Dominance, Algebraic solution Replacement Models - Items that deteriorate with Time, when Money Value Changes, Items that failed completely — Individual Replacement and Group Replacement	09	20
3.	Sequencing and Networks Sequencing — Problem with N jobs and 2 machines - 3 machines and 'M' machines Network Models — Basic Concepts, Construction of Networks, Project Network, CPM and PERT - Critical Path Scheduling, Crashing of Network	09	20

List of Tutorial:

Sr No	Name of Practical	Hours
1.	Exercise on definition, formulation of linear programing problems.	02
2.	Exercise on Graphical solution of linear programing problems	02
3.	Exercise and case problems on Simplex, Big M and Two-phase LP Problems	01
4.	Exercise and case problems on Dual and Primal LP Problems	01
5.	Exercise and case problems on Sensitivity Analysis	01
6.	Exercise and case problems on Transportation and Transhipment Problems.	01
7.	Exercise and case problems on Assignment and Travelling sales man Problems	02
8.	Exercise and case problems on Queuing theory	01
9.	Exercise and case problems on Game theory	01
10.	Exercise on Inventory model	01
11.	Exercise on Replacement theory	01
12.	Exercise and case problems on PERT/CPM	01

Text Book(s):

Title	Author/s	Publication
Operations Research	Kanti Swarup, Gupta PK, and Manmohan	S. Chand & Sons
Operations Research: An Introduction	Hamdy Taha	Pearson

Reference Book(s):

Title	Author/s	Publication
Operations Research	P Mariappan	Pearson
Operations Research	H N wagner	Prentice hall
Optimization in Operations Research	Ronald Rardin	Pearson Education Inc
Quantitative Techniques in Management	N D Vohra	Tata McGraw-Hill

Web Material Links:

• www.nptel.ac.in/

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 Marks.

Tutorial:

- Continuous Evaluation consists of Performance of Tutorial which should be evaluated out of 10 for each Tutorial and average of the same will be converted to 20 Marks.
- Internal Viva component of 30 Marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME4040	OPERATIONS RESEARCH
CO1	Formulate and solve the linear programming problems.
CO2	Compile optimal solutions by using various transportation and assignment
	methods.
CO3	Apply various methods to select and execute various optimal strategies to win the
	game.
CO4	Compute the eoq for minimizing total inventory cost, discount model, and
	replacement time of assets.
CO5	Construct a network for case problems of CPM/PERT.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Linear Models	1, 2, 4, 5
2	Transportation and Assignment	1, 2, 4, 5
3	Queuing Theory	1, 2, 4, 5
4	Inventory Control	1, 2, 4, 5
5	Decision Models	1, 2, 4, 5
6	Sequencing and Networks	1, 2, 4, 5

Department of Mechanical Engineering

Course Code: SEME4910

Course Name: Project/Summer Internship

Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)								
Theory	Dwaatiaal	ical Tratagial Condit		Described Transfel Coult		The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
04	00	00	04	00	00	100	00	00	00	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Outline of the Course:

Project

- The project will be aligned with the aims of the engineering programme and its areas of specialization and shall be based on the recent trends in technology.
- The student shall carry out a comprehensive project at relevant academic / R&D / industrial organization.
- The student is required to submit a project report based on the work carried out.

Training

- The aim of this course is to use the internship experience to enable students to develop their engineering skills and practices.
- The student will be placed in industry/organization for 12 to 18 weeks and assessed for academic credit.
- The students may select industry on their own or one which is offered by institute.
- Students are expected to experience a real-life engineering workplace and understand how their engineering and professional skills can be utilized in industry.
- The student is required to submit a project report based on the work carried out.

Course Outcome(s):

After completion of the course, the students will be able to

SEME4910	PROJECT/ SUMMER INTERNSHIP
CO 1	Support the theoretical learning with practice and integrate knowledge for engineering applications
	engineering applications
CO 2	Adapt to real time industry exposure and experience
CO 3	Solve challenging projects for commercial, societal and environment benefit.
CO 4	Explain the importance of planning, documentation, punctuality and work ethics.
CO 5	Document the work which is carried out in proper format with industry standards.

Department of Mechanical Engineering

Course Code: SEME4920

Course Name: Project/Training Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Dragtical	Dwastical Tutowial		The	eory	Prac	ctical	Tut	orial	Total	
Theory	Practical	Tutoriai	Credit	Tutorial Credit	CE	ESE	CE	ESE	CE	ESE	Total
00	24	00	23	00	00	200	300	00	00	500	

CE: Continuous Evaluation, ESE: End Semester Exam

Outline of the Course:

Project

- The project will be aligned with the aims of the engineering programme and its areas of specialization and shall be based on the recent trends in technology.
- The student shall carry out a comprehensive project at relevant academic / R&D / industrial organization.
- The student is required to submit a project report based on the work carried out.

Training

- The aim of this course is to use the internship experience to enable students to develop their engineering skills and practices.
- The student will be placed in industry/organization for 12 to 18 weeks and assessed for academic credit.
- The students may select industry on their own or one which is offered by institute.
- Students are expected to experience a real-life engineering workplace and understand how their engineering and professional skills can be utilized in industry.
- The student is required to submit a project report based on the work carried out.

Course Outcome(s):

After completion of the course, the students will be able to

SEME4920	PROJECT/ TRAINING
CO 1	Support the theoretical learning with practice and integrate knowledge for engineering applications
CO 2	Adapt to real time industry exposure and experience
CO 3	Solve challenging projects for commercial, societal and environment benefit.
CO 4	Explain the importance of planning, documentation, punctuality and work ethics.
CO 5	Document the work which is carried out in proper format with industry standards.

Department of Mechanical Engineering

Course Code: SEME3591

Course Name: Fuels and Combustion

Prerequisite Course(s): -- SEME3121 – Internal Combustion Engines

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)							
Theory	Dragtigal	Described Testavial Conditi		The	Theory Practica		ctical	Tutorial		Total	
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
03	00	00	03	40	60	00	00	00	00	100	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• learn about different types of fuels.

• learn about the importance of fuels in various applications.

• learn about combustion of fuels and equipment required for combustion.

Section I					
Module	Content	Hours	Weightage		
No.			in %		
1.	Classification and Properties of Fuels Fuels-Types and characteristics of fuels-determination of properties of fuels. Fuel analysis-Proximity and ultimate analysis-Calorific value (CV). Gross and net calorific values (GCV, NCV). Bomb calorimetry-empirical equations for CV estimation.	08	20		
2.	Solid Fuels Origin of coal. Ranking of coal. Washing, cleaning and storage of coal. Renewable solid fuels, comparative study of solid, liquid and gaseous fuels, selection of coal for different industrial applications, carbonization of coal.	10	20		
3.	Liquid Fuels Origin of crude oil, composition of crude petroleum, classification of crude petroleum, removal of salt from crude oil, processing of crude petroleum, fractionation distillation, ADU and VDU, cracking, hydrotreatment and reforming	07	10		
Section II					
Module No.	Content	Hours	Weightage in %		
1.	Gaseous Fuels Rich and lean gas, wobbe index, natural gas, dry and wet natural gas, foul and sweet NG, LPG, LNG, CNG, Methane, producer gas, water gas, coal gasification, gasification efficiency.	10	25		
2.	Combustion General principles of combustion, types of combustion	10	25		
			1		

processes, combustion chemistry, combustion equations, kinetics of combustion, combustion of solid fuels, combustion calculations, air fuel ratio, excess air calculations. Combustion equipments Analysis of fuel gases by orsat apparatus, combustion of solid fuels, grate firing and pulverized fuel firing systems,	
fluidinzed bed combustion, circulating fluidized bed boiler,	
burners, factors affecting burners and combustion.	

Text Book(s):

(-)		
Title	Author/s	Publication
Principle of combustion, 2nd	K. K. Kenneth	Wiley publication, USA, 2012
edition		
Fuels-solid, liquid and gases-Their	H.J. Philips	Foster Press, USA, 2010
analysis and valuation		

Reference Book(s):

Title	Author/s	Publication
The chemistry and technology of	J G Speight	Taylor and Francis Ltd., USA
coal		2016
Fuels and combustion	S Sarkar	University Press, India, 2009

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carried of 10 Marks of Evaluation Banner or Presentation on modern measuring Instruments.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3591	FUELS AND COMBUSTION			
CO 1	Differentiate between various fuels.			
CO 2	Categorize the importance of fuels and its application.			
CO 3	Understand the control of emissions in combustion.			
CO 4	Describe the concept of combustion equipments.			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Thermal Power Plant	1, 2, 3, 5
2	Economics of Power Generation	1, 2, 3, 4, 5
3	High Pressure Steam Generators	1, 2, 3, 4, 5
4	Coal and Ash Handling Systems	1, 2, 6
1	Draught System	1, 2, 3, 5
2	Nuclear and Hydro Power Plant	1, 2, 3, 4, 5
3	Feed Water Treatments	1, 2, 4, 5

4	Condenser and Cooling Tower	1, 2	, 3

Department of Mechanical Engineering

Course Code: SEME3620

Course Name: Production Management

Prerequisite Course(s): -- SEME4040 – Operations Research, SEME3090 – Industrial Engineering

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exa	minatio	on Schei	me (Ma	rks)		
Theory	Theory Drastical Tutorial Cond		harman Duration Tutovial Condit	Cuadit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
03	00	00	03	40	60	00	00	00	00	100	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• learn about the productivity of manufacturing facility in dress making industry.

learn about production planning, management and control.

Section I				
Module	Content	Hours	Weightage	
No.			in %	
1.	Management and its evaluation Historical development, definition of management-science or art, management and administration, development of management, functions of management, types of business organization.	08	20	
2.	Apparel production planning and control Importance of apparel production planning, definitions of activities taken under apparel production planning and control.	10	20	
3.	Terminology for apparel production planning Terminologies associated with apparel production planning, production , SAM and SMV, WIP, bottle neck, critical operations, productivity, line efficiency, throughput time, lead time, pitch time and floater.	07	10	
	Section II			
Module No.	Content	Hours	Weightage in %	
1.	Kinds of manufacturing system Make through system, assembly system, progressive bundle system, unit production system, modular production system, quick response and flexible production system, effects of production system on production parameter, machine layout, through put, response time, WIP, line efficiency, productivity, skill requirement, machine requirement.	10	25	

2.	Planning, Production planning and work allocation Nature and purpose, steps involved in planning, formulating objectives, process of managing by objectives, strategies, policies & planning premises, forecasting and decision making. Operation breakdown, process flow diagram, line planning, calculation for line efficiency, machine layout.	10	25
	Production Activities Lab dips, fabric procurement, trims procurement, Label Procurement, embroidery, printing. Preparation of time and action plan for entire execution, production planning control report generation.		

Text Book(s):

Title	Author/s	Publication
Technology of clothing	Harold Carr &	Blackwell Science
manufacturers	Barbera	
Apparel Manufacturing	Jacob Solinger	Bobbin Media Corporation, 1988

Reference Book(s):

Title	Author/s	Publication
Essentials of Management	Harold Koorits and	Tata McGraw Hill, 1998
	Heinz Weihrich	
Essentials of Management	Joseph L Massie	Prentice Hall of India
_		(Pearson) Fourth Edition,
		2003.

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carried of 10 Marks of Evaluation Banner or Presentation on modern measuring Instruments.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the successful completion of the course, the students will be able to

- Explain the need and importance of apparel production planning and control.
- Explain the process of managing by objectives.
- Carry out production planning and work allocation for given situation.
- Understand and carry out production planning and work allocation for given situation.
- Create and plan preproduction activities for given situation.
- Derive time plan and action plan for given order execution.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3620	PRODUCTION MANAGEMENT
CO 1	Apply the production management skill in business organization
CO 2	Understand the planning and control of production
CO 3	Examine the production planning using various tools like sam, smv etc.
CO 4	Develop different manufacturing systems for various production planning
	activities

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Management and its evaluation	1, 2, 3, 5
2	Apparel production planning and control	1, 2, 3, 4
3	Terminology for apparel production planning	1, 2, 3,
4	Kinds of manufacturing system	1, 2, 3
5	Planning, Production planning and work allocation	1, 2, 3
6	Production Activities	1, 2, 3

P P Savani University School of Engineering

Department of Mechanical Engineering

Course Code: SEME3530

Course Name: Estimation & Costing

Prerequisite Course(s): -- SEME4040 – Operations Research

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)		Examination Scheme (Marks)								
Theory Practical		Tutorial	al Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory Fractical	Tutoriai	CE		ESE	CE	ESE	CE	ESE	Total	
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- provide deep study of the costing principles, techniques and cost component.
- address the underlying concepts, methods and application of Engineering Costing & Estimating.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	 Costing & Estimation Definition, Scope, Objectives & Significance Cost Objects, Cost Centers & Cost Units Classification of Cost Types of Estimate Standard Data Methods of Estimates 	04	05
2.	 Cost Ascertainment - Element of Cost Material Cost - EOQ, Safety Stock, Minimum level, Maximum Level, Re-order Quantity, Types of inventory control systems, Valuation by FIFO, LIFO etc., Illustrative Example Labour Cost - Methods of wage payments for direct and indirect labour, Piece rate system, Wage incentives: different plans, Illustrative Example Overheads - Collection, Classification, Apportionment, Absorption treatment of overhead, Illustrative Example 	07	15
3.	 Marginal Costing Depreciation – Purpose & Method - straight line method, Diminishing balance method Break-even analysis Margin of safety Application of marginal costing for decision making. Illustrative Example 	07	20
4.	 Budget and Budgetary Control Concepts, Types of Budgets Budgetary Control Preparation of Budgets Illustrative Example 	04	10

	Section II				
Module No.	Content	Hours	Weightage in %		
	Cost Estimation of Forging Shop				
	Losses in forging				
	Forging Cost				
	Illustrative Example				
1.	Cost Estimation of Foundry Shop	09	20		
	Estimation of pattern cost				
	Foundry losses				
	Steps for Finding Costing cost				
	Illustrative Example				
	Cost Estimation of Fabrication Shop				
2.	Weldments & Welded joints	05	10		
۷.	Welding Cost	03	10		
	Illustrative Example				
	Time & Cost Estimation of Machine Shop				
	Estimation of machining time for lathe operations				
3.	• Estimation of machining time for drilling, boring,	09	20		
	shaping, planning, milling and grinding operations				
	Illustrative Example				

Title	Author/s	Publication
Mechanical Estimating and Costing	B.P. Sinha	Tata McGraw Hill Publishing Co. Ltd. N. Delhi Vhanna Publishara Delhi 6
Mechanical Estimating and Costing	D.F. Sillia	
Mechanical Estimating and Costing	T.R. Banga and S. C. Sharma	Khanna Publishers, Delhi-6

Reference Book(s):

Title	Author/s	Publication
Industrial Engineering & Operations management	S. K. Sharma & Savita Sharma	Kataria publishers
Process Planning & Cost Estimation	R. Kesoram, C. Elanchezhian & B. Vijaya Ramnath	New age international publication
Process Planning & Cost Estimation	M. Adithan	New age international publication

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3530	COST ESTIMATION FOR ENGINEERS
CO 1	Identify different areas of Engineering Costing & Estimating.
CO 2	Analyze the applications of all the areas in day to day life.
CO 3	Apply cost estimating in decision making.
CO 4	Develop the concept of budgetary control.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Costing & Estimation	1, 2, 3, 4
2	Cost Ascertainment-Element of Cost	1, 2, 3, 4
3	Marginal Costing	1, 2, 3, 4
4	Budget and Budgetary Control	1, 2, 3, 4, 5
5	Cost Estimation of Forging and Foundry Shop	1, 2, 3, 4, 5
6	Cost Estimation of Fabrication Shop	1, 2, 3, 4, 5
7	Time & Cos Estimation of Machine Shop	1, 2, 3, 4, 5

P P Savani University School of Engineering

Department of Mechanical Engineering

Course Code: SEME3610

Course Name: Product Development & Value Engineering

Prerequisite Course(s): -- SEME4040 – Operations Research, SEME3090 – Industrial Engineering

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	minatio	on Schei	ne (Ma	rks)			
The same Described Testavial		Cnodit	The	eory	Prac	ctical	Tut	orial	Total		
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
03	00	00	03	40	60	00	00	00	00	100	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about product design.
- learn about manufacturing and assembly and able to select materials for product design.
- learn about the customer needs for product for value engineering services.

	Section I				
Module No.	Content	Hours	Weightage in %		
	Product Design				
1.	Introduction, Product life cycles, characteristics of successful product development, design and development of products, types of design and redesigns, engineering designs, duration and cost of product development, the challenges of product development.	08	20		
2.	Product Design for Manufacturing and Assembly Methods for designing for manufacturing and assembly, design for maintainability, design for environment, legal factors and social issues, engineering ethics and issues of society related to design of products, design for safety, vision and illumination design, climate, noise, motion, sound and vibration, product costing.	10	20		
3.	Product Analysis and Material Selection Tools and charts used for product analysis like bill of materials, gozinto chart, performance characteristics of materials, material selection process, sources of information on material properties, economics of materials, evaluation methods for material selection.	07	10		
	Section II				
Module No.	Content	Hours	Weightage in %		

1.	Identifying Customer Needs Customer satisfaction, voice of customer, customer populations, types of customer needs, customer need models, gathering customer needs: Need gathering methods, conducting interviews, like dislike method, articulated-used method, product feel and industrial design, organizing and prioritizing needs, grouping interpreted needs, affinity diagram, determining need importance, customer use patterns, customers need documentation.	10	25
2.	Value Engineering Definition, value engineering function, approach of function, evaluation of function, determining function, classifying function, evaluation of costs, evaluation of worth, determining worth, evaluation of value, FAST diagramming. Case studies on product design development and value engineering.	10	25

Title	Author/s	Publication
Product Design	Kevin Otto,	Pearson Education Inc.
	Kristin Wood	
Product design and development	K.T. Ulrich and	Tata McGraw Hill
	S.D. Eppinger	

Reference Book(s):

Reference book(s).				
Title	Author/s	Publication		
Product development	Chitale & Gupta	Tata McGraw Hill		
The mechanical process design	David Ullman	McGraw Hill Inc.		
Engineering Design Process	Yousef Haik	T M M Shahin, Cengage		
		Learning		
Product design & Process	Niebel and Deeper	McGraw Hill		
Engineering				
Value Management	Heller	Addison Wasley		
Value Engineering: A systematic	Arthur E. Mudge	McGraw Hill		
approach				
New Product Development	Timjones, Butterworth	Oxford		
	Heinmann			
Assembly automation and product	Geoffrey Boothroyd	CRC Taylor & Francis		
design				

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carried of 10 Marks of Evaluation Banner or Presentation on modern measuring Instruments.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3610	PRODUCT DEVELOPMENT VALUE ENGINEERING	
CO 1	Interpret product design and development process.	
CO 2	Contrast and frame customer specification to configure product with function.	
CO 3	Choose product architecture and virtual prototyping.	
CO 4	Understand contemporary issues and their impact on provided solution.	
CO 5	Solve open ended problem belongs to design engineering that meet the	
	requirements.	

1: Remember	2: Understand	3: Apply		
4: Analyze	5: Evaluate	6: Create		

Module No	Content	RBT Level			
1	Product Design	1, 2, 3, 5, 6			
2	Product Design for Manufacturing and Assembly	1, 2, 3, 4, 5, 6			
3	Product Analysis and Material Selection	1, 2, 3, 4, 5, 6			
4	4 Identifying Customer Needs				
5	Value Engineering	1, 2, 3, 4			

P P Savani University School of Engineering

Department of Mechanical Engineering

Course Code: SEME3602 Course Name: Gas Dynamics

Prerequisite Course(s): -- SEME2060 - Fluid Mechanics, SEME3101 - Power Plant Engineering

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week) Examination Scheme (Marks)										
	Theory	Practical	Tutorial	Cnodit	The	eory	Prac	ctical	Tute	orial	Total
				Credit	CE	ESE	CE	ESE	CE	ESE	Total
	03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about basic concepts of gas dynamics
- learn about how the gas behaves in different operating conditions
- learn about basics of compressible flow
- learn about application of gas dynamics in various mechanical systems

I r	Fundamentals of compressible flow: Ideal gas relationship, The adiabatic energy equation, Mach number and its significance, Mach waves, Mach cone and Mach angle, static and stagnation states, relationship	Hours	Weightage in %						
1 F	Ideal gas relationship, The adiabatic energy equation, Mach number and its significance, Mach waves, Mach cone and		111 90						
I r	Ideal gas relationship, The adiabatic energy equation, Mach number and its significance, Mach waves, Mach cone and								
t € s	between stagnation temperature, pressure, density and enthalpy in terms of Mach number, stagnation velocity of sound, reference speeds, various regions of flow, Effect of Mach number on compressibility, Area velocity relationship.	08	20						
2. S v F r i	One Dimensional Isentropic flow: General features of isentropic flow, performance curve, Comparison of adiabatic and isentropic process, One dimensional isentropic flow in ducts of varying cross- section- nozzles and diffusers, operation of nozzles under varying pressure ratio, mass flow rate in nozzles, critical properties and choking, area ratio as function of Mach number, Impulse function, non-dimensional mass flow rate in terms of pressure ratio, area ratio and Mach number, Working charts and gas tables, Application of Isentropic flow	10	20						
3. S	Flow in constant area duct with heat transfer (Rayleigh flow): Simple heating relation of a perfect gas, Rayleigh curve and Rayleigh flow equations, variations of flow properties, maximum heat transfer, tables and charts for Rayleigh flow.	07	10						
Module	Section IIModuleContentHoursWeightage								

No.			in %
1.	Normal shock Waves: Development of shock wave, Thickness of shock wave, governing equations, Strength of shock waves, Prandtl-Mayer relation, Rankine-Hugoniot relation, Mach number in the downstream of normal shock, variation of flow parameters across the normal shock, normal shock in Fanno and Rayleigh flows, impossibility of a rarefaction shock, supersonic diffusers, supersonic pitot tube.	10	25
2.	Flow in constant area duct with friction (Fanno flow): Fanno curve and Fanno flow equations, solution of Fanno flow equations, variation of flow properties, variation of Mach no. with duct length, isothermal flow in constant area duct with friction, tables and charts for Fanno flow, Experimental friction coefficients.	10	25

Title	Author/s	Publication
Fundamental of Compressible flow	S. M. Yahya	New Age International Publication
Fundamentals of compressible	P. Balachandran	PHI Learning, New Delhi
fluid dynamics		

Reference Book(s):

Title	Author/s	Publication
Gas Dynamics	E. Rathakrishnan	PHI Learning, New Delhi
Gas Dynamics and Jet Propulsion	P. Murugaperumal	Scitech Publication, Chennai.

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carried of 10 Marks of Evaluation Banner or Presentation on modern measuring Instruments.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3602	GAS DYNAMICS			
CO 1	Understand the fundamentals of compressible flow			
CO 2 Formulate and develop the flow parameters for isentropic flow.				
CO 3	Analyze the effect of normal shock in compressible flow.			
CO 4	Study the effect of friction on compressible flow in constant area duct.			
CO 5	Study the flow through constant area duct with heat transfer			

1: Remember	2: Understand	3: Apply		
4: Analyze	5: Evaluate	6: Create		

Module No	Content	RBT Level
1	Fundamentals of compressible flow	1, 2, 3, 5
2	One Dimensional Isentropic flow	`1, 2, 3, 4, 5

3	Flow in constant area duct with heat transfer (Rayleigh flow)	1, 2, 3, 3, 5
4	Normal shock Waves	1, 2, 3, 5
5	Flow in constant area duct with friction (Fanno flow)	1, 2, 3, 5

P P Savani University Institute of Diploma Studies

Department of Mechanical Engineering

Course Code: SEME3570 Course Name: Mechatronics

Prerequisite Course(s): - SEME4011 - Control Engineering, SESH1240 - Electrical & Electronics

Workshop

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)							
Theory	Practical	Tutorial Credit	T (Cnodit	The	eory	Prac	ctical	Tut	orial	Total
Theory			Creait	CE	ESE	CE	ESE	CE	ESE	Total	
03	00	00	03	40	60	00	00	00	00	150	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand applications signal processing, sensors, actuators.
- Apply the importance of mechatronics systems.
- Understand the importance of maintenance and safety in Robotics systems.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Introduction Control devices-Meaning, need and application. Open loop control. Closed loop control Sinking and sourcing concept.	04	08
2.	Signal Processing Signal processing- Need and meaning. Data acquisition Sampling. Digitized signal. Sampling rate. Nyquist frequency. Aliasing. Analog to digital signal conversion. Digital to analog signal conversion	06	14
3.	Sensors Sensors- Need and classification. Important parameters (such as sensitivity, linearity, range, response time, accuracy, repeatability, Resolution, threshold value etc.) Its definitions and Importance in sensor Selection. Working and application of sensing technique for following parameter. i. Position and speed. ii. Stress, strain. iii. Temperature. iv. Pressure. v. Flow and level. vi. Vibration vii. Acoustic viii. Optical ix. Object detection. Selection criteria for sensors. Common troubles and remedies in sensor operations.	08	18
4.	Actuators Definition, need, working, applications. Electrical actuator (working and application). i. DC motors – series, shunt and compound. ii. Ac Single-phase motor. AC poly phase motor. iv. Servo Motor v. Stepper motors. Hydraulic & Pneumatic actuators (working and application) i. Types of Cylinder. ii.	04	08

	Direction control valve. Precautions in handling / operating actuators. Selection criteria. Common troubles and remedies.				
	Section II				
Module No.	Content	Hours	Weightage in %		
5.	Mechatronic Systems Introduction. Design steps and considerations. Various mechatronics systems. i. Being used in day-to-day life. ii. Expected use in future. Working elements ,its functions and applications of following system. i. Hydraulic robot arm. ii. DC motor based bottle filling. iii. Temperature sensing system. Mechatronics systems, which are in recent trend.	11	25		
6.	Robotics Applications, Maintenance and Safety Applications of robots (including special types). Robot maintenance: Need and types. Common troubles and remedies in robot operation. General safety norms, aspects and precautions in robot handling	12	27		

Title	Author/s	Publication
Mechatronics-Electronics Control	W.Boltong Pearson	Tata McGraw Hill
Systems in Mechanical and Electrical	_	Education
Engineering		
Mechatronics	Ganesh Hedge	Jones & Bartlett

Reference Book(s):

Title	Author/s	Publication
Robotics-Control, Sensing,	Ralph Gonzalez, C.S.G.	Tata McGraw Hill Education
Vision and Intelligence	Lee, K.S. Fu	
Industrial Robotics	Roger N Nagel, M.P.	Tata McGraw Hill Education
	Groover, N.G. Odrey,	
	Michell Weiss	

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carried of 10 Marks of Evaluation Banner or Presentation on modern measuring Instruments.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3570	MECHATRONICS
CO 1	Understand the basic concept of signal processing.
CO 2	Understand the working principle of sensors and actuators.
CO 3	Define and identify various mechatronics systems.
CO 4	Understand the importance of maintenance and safety of Robotics.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1, 2, 3
2	Signal Processing	1, 2, 3, 5
3	Sensor	1, 2, 3
4	Actuators	1, 2, 3
5	Mechatronics Systems	1, 2, 3, 4
6	Robotics Applications, Maintenance and Safety	1, 2, 3, 4

P P Savani University School of Engineering

Department of Mechanical Engineering

Course Code: SEME3581

Course Name: Plastics, Ceramics and Composites

Prerequisite Course(s): SEME2020 - Material Science and Metallurgy, SEME2050 - Forming &

Machining Processes, SEME3051 - Production Technology,

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Scher	ne (Mar	·ks)				
Theory Practical Tutori		eory Practical Tutorial Credit	The	eory	Prac	ctical	Tut	orial	Total			
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
03	00	00	03	40	60	00	00	00	00	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the concept of plastic, ceramic and composite material.
- know processing of plastics and ceramics materials.
- identify different manufacturing process for composite material.

	Section I				
Module No.	Content	Hours	Weightage in %		
1.	Introduction Polymeric materials and comparison with other engineering materials. Plastic, Thermoplastic and Thermosets, Elastomers and polymers.	04	10		
2.	Processing of plastics and rubbers Introduction to injection moulding, rotational moulding, extrusion, blow moulding, plastic film blowing, compound moulding, resin transfer moulding, resin injection moulding, designing with plastics and rubbers.	09	20		
3.	Fabrication and decorating of plastics Machining of plastics, turning, drilling, sawing, threading, post- moulding techniques, hot stamping, metallic coatings, electroplating, printing, vacuum metalizing and some case studies.	09	20		
	Section II				
Module No.	Content	Hours	Weightage in %		
1.	Ceramic materials Atomic bonding and crystal structure in ceramics, conventional ceramics and glass structure, refractory and insulating materials, physical, thermal, electrical, magnetic, optical and piezoelectric properties, Differentiation from other engineering materials, Time temperature and environmental effect on properties of ceramics.	08	15		

2.	Processing of ceramics Phase Equilibrium Diagram, Gibbs phase rule, advanced structural ceramics, synthesis and processing of ceramics, sintering process, powder pressing and sintering fabrication processes, Sintering defects, slip casting, ceramic injection moulding, tape casting, properties & applications of ceramics and material selection.	07	15
3.	Composite materials Merits & demerits of composites, application of composite, manufacturing processes of composites, Property evaluation of composites.	08	20

Reference Book(s):

Title	Author/s	Publication
		Marcel Dekker, New York,
Plastic Process Engineer	Throne James L.	1979.
Engineering Design of Plastics and	Crawfard R.J	Woodhead Publication, U.K,
Rubber	Crawiai u K.j	1985
Modern Ceramic Engineering,		Marcel Dekker,
Properties, Processing and Use in	Richerson David	1987
Design		1907
Engineering Materials and their	Flinn R.A. and Trojan	Jaico Publishing House, 1999.
Applications	P.K.	
Introduction to Ceramics	Kingery W.D, Bowen	John Wiley & Sons, 1975.
	H. K and Uhlman D.R.	John Whey & Johns, 1973.

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3581	PLASTICS, CERAMICS & COMPOSITES
CO 1	Know the different processes and bedecking of plastics and rubbers.
CO 2	Apply the knowledge and applications of ceramics in material selection.
CO 3	Understand application of composite materials.
CO 4	Identify materials for different applications.

1: Remember	2: Understand	3: Apply		
4: Analyze	5: Evaluate	6: Create		

Module No	Content	RBT Level
1	Introduction	1, 2, 3

2	Processing of Plastic and Rubbers	1, 2, 3, 5
3	Fabrication and decorating of plastics	1, 2, 3
4	Ceramic materials	1, 2, 3
5	Processing of ceramics	1, 2, 3, 4
6	Composite materials	1, 2, 3, 4

P P Savani University School of Engineering Course Code: SEME3541

Course Name: Design of Pressure Vessel & Piping

Prerequisite Course(s): -- SECV2102 – Advanced Solid Mechanics, SEME3060 – Design of Basic

Machine Elements, SEME4031 – Design of Power Transmission Elements

Teaching & Examination Scheme:

Teacl	Teaching Scheme (Hours/Week)				Exa	minati	on Schei	me (Ma	rks)	
Theory	Dragtigal	Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about design of pressure vessels and piping systems.
- learn to use of various standards used for the pressure vessel design.

	Section I			
Module No.	Content	Hours	Weightage in %	
1.	Stresses in Pressure Vessel Introduction to stresses in pressure vessel and its application to shells and end closures, stresses in circular plate, Thermal stresses, stresses in plate having the circular hole due to bi-axial loading, excessive elastic deformation, plastic instability, brittle, rupture and creep.	08	20	
2.	Pressure vessel design code Introduction to ASME code for pressure vessel design, pressure vessel and related components design using ASME codes, design of nozzle.	10	20	
3.	Supports design for Pressure vessel Design of base plate and support lugs, allowable stresses, design of saddle supports.	07	10	
	Section II			
Module No.	Content	Hours	Weightage in %	
1.	Other design consideration in pressure vessel Buckling phenomenon, Elastic buckling of circular ring and cylinders under external pressure, collapse of thick walled cylinders or tubes under external pressure, effect of supports on elastic buckling of cylinders, design of circumferential stiffness, buckling under combine external pressure and axial loading, fatigue, shock high pressure high temperature irradiation corrosion and other hostile environments, high strength, light weight pressure vessels resistant to external high pressures found in undersea exploration.	10	25	
2.	Piping design for pressure vessel			

piping as per B31.1 piping code, piping components: bends, tees bellows and valve. Types of piping supports and the	
behaviour, Introduction to piping codes and standards.	

Title	Author/s	Publication
Pressure vessel design	J F Harvey	CBS publication
Process equipment design	L E Brownell	Wiley Eastern Ltd., India

Reference Book(s):

Title	Author/s	Publication
ASME Pressure Vessel and Boiler	-	-
Code, Section VIII Div 1,2 and 3		
Pressure vessel design handbook	Henry H Bednar	CBS publishers and
		distributors
Chemical Process equipment,	Stanley M Wales	-
selection and design,		
Butterworths, Series in Chemical		
Engineering, 1988		
Pressure Vessels: ASME Code	J Philip Ellenberger	-
Simplified		
Fundamentals of piping design	P Smith	Elsevier

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carried of 10 Marks of Evaluation Banner or Presentation on modern measuring Instruments.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3541	DESIGN OF PRESSURE VESSEL & PIPING			
CO 1	Analyse thin plates and shells for various types of stresses.			
CO 2	Understand and evaluate the terms involved for the design of pressure vessel ar			
	piping.			
CO 3	Develop shells, end closures and nozzles of pressure vessels using asme codes.			
CO 4	Analyse and examine piping systems.			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1.	Stresses in Pressure Vessel	1, 2, 3, 4, 5, 6
2.	Pressure vessel design code	1, 2, 3, 4
3.	Supports design for Pressure Vessel	1, 2, 3, 4, 5
4.	Other design consideration in pressure vessel	1, 2, 4, 5
5.	Piping design for Pressure vessel	1, 2, 3, 4, 5, 6

Course Code: SEME3512

Course Name: Advance Manufacturing Technology

Prerequisite Course(s): SEME2030 - Non-Cutting Manufacturing Processes, SEME2050 - Forming

& Machining Processes, SEME3051 - Production Technology

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exa	aminati	on Scher	ne (Mar	ks)		
	Theory	Theory Practical Tu		ractical Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
	Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn the principles of material removal mechanism of nontraditional processes.
- provide depth knowledge in selection of advanced machining process to fabricate intricate and complex shapes in difficult to machine material.
- provide awareness of advanced Nano and additive manufacturing techniques.

Section I					
Module	Content	Hours	Weightage		
No.	Contont	1100110	in %		
1.	Introduction Trends in modern manufacturing; characteristics and classification of modern manufacturing methods, considerations in the process selection.	02	05		
2.	Mechanical Advanced Machining Processes Introduction, principle, process description, process capabilities, material removal mechanism, parametric analysis, tool design, limitations, and applications of Ultrasonic Machining (USM), Abrasive Jet Machining (AJM), Water Jet Machining (WJM) and Abrasive Water Jet Machining (AWJM) processes.	12	25		
3.	Electro-Chemical Processes Fundamental principle of ECM process, Chemistry of the ECM processes, process capabilities, determination of material removal rate, surface finish and accuracy, limitations, and applications of Electrochemical Machining (ECM), Electrochemical Grinding (ECG), Electrochemical deburring, Electrochemical honing and Chemical Machining (CM) processes.	08	20		

	Section II					
Module	Content	Hours	Weightage			
No.	Content	nours	in %			

1.	Thermal Metal Removal Processes Electrical Discharge Machining (EDM): Working principle, process description, process capabilities, power circuits, mechanism of material removal, selection of tool electrode and dielectric fluid, limitations, and applications. Wirecut electro discharge machining, powder mixed electro discharge machining process. Laser Beam Machining (LBM): Working principle, type of lasers, machining applications of lasers, mechanism of material removal, shape and material, applications and limitation. Electron Beam Machining (EBM): Generation and control of electron beam, EBM systems, process analysis & characteristics, mechanism of material removal, shape and material, applications and limitations. Plasma Arc Machining (PAM) and Ion Beam Machining (IBM): Process principle, analysis and characteristics of process, mechanism of material removal, shape and material, applications and limitations.	10	30
2.	Hybrid Machining Concept, classification, process capabilities, and applications of various hybrid machining methods based on USM, EDM, ECM, etc.	04	7
3.	Micromachining Processes Introduction to micro machining methods; material removal mechanism and process capability of micro machining methods like micro -turning, micro-milling, micro-drilling, micro EDM, micro- WEDM, micro ECM, etc. ultra-precision machining, electrolytic in-process dressing and grinding.	05	7
4.	Additive Processes: Introduction to additive manufacturing processes, classification, laminated object manufacturing process, adhesive manufacturing process, and digital manufacturing process.	04	6

Title	Author/s	Publication
Introduction to micro machining	V. K. Jain	Narosa publishing house, New Delhi
Nonconventional machining	P. K. Mishra	Narosa publishing house, New Delhi
Modern Machining Processes	P. C. Pandey	Tata McGraw Hill, New Delhi

Reference Book(s):

Title	Author/s	Publication
Advanced Machining processes	V. K. Jain	Allied publishers, New Delhi
Nontraditional manufacturing processes	G. Benedict	Marcel Dekker, New York
Advanced methods of machining	J. A. McGeough	Chapman & Hall, London
Manufacturing Scienc	A. Ghosh and A. K. Malli	East-West Press, New Delhi

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3512	ADVANCE MANUFACTURING TECHNOLOGY
CO 1	Identify suitable manufacturing process for advanced materials and
	manufacturing complication.
CO 2	Explain and deal with sophisticated and advanced equipment such as IBM, EBM,
	PAM, Waterjet machine etc.
CO 3	Understand the micro machining processes.
CO 4	Apply the additive manufacturing concept in ear of industry 4.0.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1.	Mechanical Advanced Machining Processes	1, 2, 3, 4
2.	Electro-Chemical Processes	1, 2, 3, 4
3.	Thermal Metal Removal Processes	1, 2, 3, 4,
4.	Hybrid Machining	1, 2, 4
5.	Micromachining Processes	1, 2, 3, 4, 5, 6
6.	Additive Processes	1, 2, 3, 4

P P Savani University School of Engineering

Department of Mechanical Engineering

Course Code: SEME3521

Course Name: Applied Thermodynamics

Prerequisite Course(s): - SEME2011 - Engineering Thermodynamics, SEME3130 - HVAC Systems

Teaching & Examination Scheme:

	O .									
Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	me (Ma	rks)		
The own Drogtical Tutowiel		Propried Theory		Practical		Tutorial		Т-4-1		
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Know the properties of gases and mixture.
- Understand psychrometry chart.
- Identify different refrigerants for refrigeration cycles.
- Explain air and actual fuel cycles.
- Understand IC engine emission.
- Relate compressible flow.

Section I					
Module No.	Content	Hours	Weightage in %		
1.	Properties of gases and gas mixture Avogadro's law, equation of state, Vander Waal's equation, reduced properties, law of corresponding states, compressibility chart, internal energy; enthalpy and specific heat of a gas mixtures.	04	10		
2.	Psychrometry Dalton's law of partial pressure, Properties of moist air, temperature and humidity measuring instruments, psychrometric chart, psychrometric processes such as sensible heating and cooling, heating and humidification cooling and dehumidification, chemical dehumidification, adiabatic saturation.	05	10		
3.	Refrigerant and Refrigerating cycles Classification, nomenclature and desirable properties of refrigerant, secondary refrigerants, ODP and GWP, Compound compression with intercooler, flash gas removal and flash intercooler, Desirable characteristics of refrigerant absorbent pair for vapor absorption cycle, Simple H2O -NH3 cycle, LiBr2 – H2O cycle and its working.	10	20		
4.	Fuel Air and Actual Cycles Assumptions for fuel–air cycles, reasons for variation of specific heats of gases, change of internal energy and	03	10		

	enthalpy during a process with variable specific heats, isentropic expansion with variable specific heats, effect of variable specific heats on Otto, Diesel and Dual cycle, dissociation, comparison of air standard and fuel air cycles, effect of operating variables, comparison of air standard and actual cycles, effect of time loss, heat loss and exhaust loss in petrol and diesel engines,		
	Section II	•	
Module	Content	Hours	Weightage
No.			in %
	IC Engine Performance and Emission		
1.	Measurement of indicated power, brake power, friction power, fuel consumption and emission, calculation of brake thermal efficiency, brake power and brake specific fuel consumption, variable compression ratio engines, heat balance sheet, principal engine emissions, source of engine emissions, emission measurement instruments like five gas analyzer and smoke meter, Euro and Bharat standards of emissions of I.C. Engines, Emission control methods like Air injection, Exhaust gas recirculation, Catalytic converter, Evaporative emissions control.	05	10
2.	Fundamentals of Compressible Flow : Ideal gas relationship, Adiabatic energy equation, Mach number and its significance, Mach waves, Mach cone and Mach angle, static and stagnation states, relationship between stagnation temperature, pressure, density and enthalpy in terms of Mach number, stagnation velocity of sound, reference speeds, various regions of flow, Effect of Mach number on compressibility, Area velocity relationship.	12	25
3.	Recriprocating Compressor Construction and working, Multistage conditions for minimum work, Intercooling, Efficiency and control of air compressors. Centrifugal Compressors Essential parts, Static and total head properties, Velocity diagram, Degree of reaction, surging and choking, Losses in centrifugal compressor. Axial Flow Compressor Construction of an axial flow compressor, Aerofoil blading, Lift and drag, Performance characteristics	06	15

Title	Author/s	Publication
Engineering Thermodynamics	P.K. Nag	McGraw Hill Education
Refrigeration and Air	C.P. Arora	McGraw Hill India Publishing Ltd.
Conditioning		_
Internal Combustion Engine	John B. Heywood	McGraw Hill Education Pvt. Ltd.
Fundamentals		

Reference Book(s):

Title	Author/s	Publication
Fundamentals of Internal	H.N. Gupta	PHI Learning
Combustion Engines		
Turbines, Compressor and	S.M. Yahya	TMH Publishers
Fans		

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carried of 10 Marks of Evaluation Banner or Presentation on modern measuring Instruments.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3521	APPLIED THEROMODYNAMICS	
CO 1	Apply various laws of real gas and their mixture to make use of psychrometric	
	properties.	
CO 2	Experiment with vapor compression and vapor absorption systems.	
CO 3	Explain fuel-air and actual cycles for IC engines and to develop understanding of	
	IC engines testing and their emission norms	
CO 4	Apply fundamental of compressible fluid flow.	
CO 5	Demonstrate various air compressor and experiment with them.	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Properties of gases and gas mixtures	1, 2, 3
2	Psychrometry	1, 2, 3, 5
3	Refrigerant and Refrigeration cycles	1, 2, 3
4		
1	1 IC engine performance and emissions.	
2	<u> </u>	
Reciprocating compressors, centrifugal compressors and		1, 2, 3, 4
	Axial flow compressors	

School of Engineering

Department of Mechanical Engineering

Course Code: SEME3631

Course Name: Automobile Engineering

Prerequisite Course(s): - SEME3121 – Internal Combustion Engines

Teaching & Examination Scheme:

Teac	Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)								
Theory	Dog et est	Tutorial	Cnodit	The	eory	Prac	ctical	Tut	orial	Total		
Theory	Practical		Tutoriai	Tutoriai	Tutoriai Credit	Credit	CE	ESE	CE	ESE	CE	ESE
03	00	00	03	40	60	00	00	00	00	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- make students understand the basic concepts, requirements and working of various Components of automobile.
- enable students to design basic systems like brakes, steering, and suspensions.
- make students understand construction and working of different systems like Transmission, steering and suspensions.
- make students understand automotive electronics.
- aware students about recent technologies in automobile engineering and its working.
- reduce the pace between basic vehicle technology and technologies in modern vehicles.

	Section I				
Module No.	Content	Hours	Weightage in %		
5.	Introduction and Performance: History and development of automobile, classification, layout, major components, Resistance to motion of vehicle, air rolling and gradient resistances. Power requirement for acceleration and gradability	04	10		
6.	Brakes: Types of brakes – drum, disc, power and hydraulic; Brake efficiency and stopping distance, Weight transfer, skidding, antilock braking system.	05	10		
7.	Transmission System: Constructional features and working of clutches, Gear Train: sliding mesh, constant mesh and synchromesh gear boxes with related components, Propeller and drive shaft, universal joints, Rear wheel drive arrangements, Rear axle final drive, the differential, rear axle, Simple problems in all mentioned topics, Automatic Transmission and CVT.	10	20		
8.	Wheels and Tyres: Types of wheels, Types of tyres, Tyre thread, Tyre selection.	03	10		
Section II					
Module No.	Content	Hours	Weightage in %		

4.	Electrical and Electronics System: Electrical and electronic components of vehicle, fundamentals of engine electricals, Lighting and Indicators: Features, Requirements and typical settings, Body electrical and electronic systems, Monitoring and Instrumentation.	05	10
5.	Steering System: Types of suspension systems, Functional requirements of suspension systems, Front suspension system and Steering: Types, Definitions for wheel orientation and its effect, Types and Constructional features of Front Suspension, Steering layout, types of steering gears, steering linkages, steering mechanism, definitions and significance of camber, caster and king pin inclination, toe in and toe out on turn, measurement and adjustment of various steering system layouts, steering ratio, under steering and over steering, steering geometry	12	25
6.	Suspension System: Principle, type of suspension system, conventional and independent front and rear axle, spring, rubber and air suspensions, automatic/hydro suspension system, shock absorbers.	06	15

Reference Book(s):

Title	Author/s	Publication
Automobile Engineering	Kirpal Singh	Standard Pub.& Dist.
Automobile Technology	N. K. Giri	Khanna Publication
Course in Automobile	R. P. Sharma	Dhanpat Rai & Sons.
Engineering		_
Automobile Engineering	S. K. Saxena	Laxmi Publication Pvt. Ltd.

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carried of 10 Marks of Evaluation Banner or Presentation on modern measuring Instruments.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3631	AUTOMOBILE ENGINEERING	
CO 1	Demonstrate working of various automobile systems.	
CO 2	Explore various types of tyres and wheels.	
CO 3	Compare and select type of vehicle as per safety, features and applications.	
CO 4	Discover the various automobile electronics.	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level

1	Introduction and Performance	1, 2, 3
2 Brakes		1, 2, 3, 5
3	Transmission System	1, 2, 3
4	Wheels and Tyres	1, 2, 3
1	Electrical and Electronics Systems	1, 2, 3, 4
2	Steering System	1, 2, 3, 4
3	Suspension	1, 2, 3, 4

School of Engineering

Department of Mechanical Engineering

Course Code: SEME3650

Course Name: Quality Engineering & Reliability

Prerequisite Course(s): -- SEME2070 Mechanical Measurement & Metrology, SEME3090 -

Industrial Engineering, SEME4040 – Operations Research

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Teaching Scheme (Hours/Week) Examination Scheme (Marks)						
Theory	Dwaatiaal	Tutorial	Cuadit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn various tools for TQM and design of experiments.
- Learn various tools under TPM.
- Understand the importance of ISO and QS codes.

Module No. Content Hours Weightage in % in % in % weightage in % in % 1. Introduction Quality - Concept, Different Definitions and Dimensions, Inspection, Quality Control, Quality Assurance and Quality Management, Quality as Wining Strategy, Views of different Quality Gurus. 02 5 2. Total Quality Management (TQM) Introduction, Definitions and Principles of Operation, Tools and Techniques, such as, Quality Circles, 5 S Practice, Total Quality Control (TQC), Total Employee Involvement (TEI), Problem Solving Process, Quality Function Deployment (QFD), Failure Mode and Effect analysis (FMEA), Fault Tree Analysis (FTA), Kizen, Poka-Yoke, 7QC Tools, PDCA Cycle, 7 New Quality Improvement Tools, TQM Implementation and Limitations. 07 15 3. Introduction to Design of Experiments Introduction, Methods, Taguchi approach, Achieving robust design, Steps in experimental design. 07 15 4. Just-In-Time and Quality Management Introduction to JIT production system, KANBAN system, JIT and Quality Production. 06 15 Module No. Content Hours Weightage in % 1. Introduction to Total Productive Maintenance (TPM) Introduction, Content, Methods and Advantages 05 10 2. Introduction to ISO9000, ISO1400 and QS9000 05 10		Section I								
1. Quality - Concept, Different Definitions and Dimensions, Inspection, Quality Control, Quality Assurance and Quality Management, Quality as Wining Strategy, Views of different Quality Gurus. Total Quality Management (TQM)		Content	Hours							
Introduction, Definitions and Principles of Operation, Tools and Techniques, such as, Quality Circles, 5 S Practice, Total Quality Control (TQC), Total Employee Involvement (TEI), Problem Solving Process, Quality Function Deployment (QFD), Failure Mode and Effect analysis (FMEA), Fault Tree Analysis (FTA), Kizen, Poka-Yoke, 7QC Tools, PDCA Cycle, 7 New Quality Improvement Tools, TQM Implementation and Limitations. 3. Introduction to Design of Experiments Introduction, Methods, Taguchi approach, Achieving robust design, Steps in experimental design. Just-In-Time and Quality Management Introduction to JIT production system, KANBAN system, JIT and Quality Production. Section II Module No. Content Hours Weightage in % Introduction, Content, Methods and Advantages 05 10	1.	Quality – Concept, Different Definitions and Dimensions, Inspection, Quality Control, Quality Assurance and Quality Management, Quality as Wining Strategy, Views of different	02	5						
3. Introduction , Methods, Taguchi approach, Achieving robust design, Steps in experimental design. Just-In-Time and Quality Management Introduction to JIT production system, KANBAN system, JIT and Quality Production. Section II Module No. Content Hours Weightage in % Introduction to Total Productive Maintenance (TPM) Introduction, Content, Methods and Advantages 05 10	2.	Introduction, Definitions and Principles of Operation, Tools and Techniques, such as, Quality Circles, 5 S Practice, Total Quality Control (TQC), Total Employee Involvement (TEI), Problem Solving Process, Quality Function Deployment (QFD), Failure Mode and Effect analysis (FMEA), Fault Tree Analysis (FTA), Kizen, Poka-Yoke, 7QC Tools, PDCA Cycle, 7 New Quality	07	15						
4. Introduction to JIT production system, KANBAN system, JIT and Quality Production. Section II Module No. Content Hours Weightage in % Introduction to Total Productive Maintenance (TPM) Introduction, Content, Methods and Advantages 05 10	3.	Introduction , Methods, Taguchi approach, Achieving robust	07	15						
Module No. Content Hours in % Introduction to Total Productive Maintenance (TPM) 05 10	4.	Introduction to JIT production system, KANBAN system, JIT	06	15						
No. Introduction to Total Productive Maintenance (TPM) Introduction, Content, Methods and Advantages 05 10		Section II	1							
1. Introduction, Content, Methods and Advantages 05 10		Content	Hours							
2. Introduction to ISO9000, ISO1400 and QS9000 05 10	1.		05	10						
	2.	Introduction to ISO9000, ISO1400 and QS9000	05	10						

	Basic Concepts, Scope, Implementation, Benefits, Implantation Barriers.		
3.	Contemporary Trends Concurrent Engineering, Lean Manufacturing, Agile Manufacturing, World Class Manufacturing, Cost of Quality (COQ) system, Bench Marking, Business Process Reengineering, Six Sigma - Basic Concept, Principle, Methodology, Implementation, Scope, Advantages and Limitation of all as applicable.	07	15
4.	Introduction to Probability Theory Fundamental laws of probability, Random variables; Probability distribution function; Discrete and continuous distribution; Histogram and Normal distribution curve, Mean, variance and standard deviation of a distribution function. Random samples.	06	15
5.	Reliability Concepts Fundamental laws of probability, Random variables; Probability distribution function; Discrete and continuous distribution; Histogram and Normal distribution curve, Mean, variance and standard deviation of a distribution function. Random samples.		

Title	Author/s	Publication		
Quality Assurance and Total Quality	K.C. Jain and A.K.	Khanna Publishers		
Management (ISO9000, QS9000, ISO1400)	Chitale	Kilalilia Publisileis		
Statistical Quality Control	M. Mahajan	DHanpat Rai & Co. (P) Ltd.		
Quality Control & Application	B.L. Hanson &	Prentice Hall of India		
Quality Control & Application	P.M. Ghare	Prentice half of illula		

Reference Book(s):

Title	Author/s	Publication		
Total Quality Management	Dale H. Besterfield	Carol Besterfield-Michna, Glen H.		
Reliability Engineering	L.S. Srinath	Affiliated East West Press		

Web Material Links:

https://nptel.ac.in/courses/112105233/

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Tests Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME3650	QUALITY ENGINEERING & RELIABILITY
CO1	Select the tools for quality control and reliability.
CO2	Design using TQM about problem solving process, Quality Function Development and Failure Mode and effect analysis.
CO3	Explain JIT and KANBAN system for quality production.

CO4	Develop the knowledge of ISO9000, ISO1400 and QS9000
-----	--

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1,2,3
2	Total Quality Management (TQM)	1,2, 3, 4,
3	Introduction to Design of Experiments	1, 2, 3, 4
4	Just-In-Time and Quality Management	1, 2, 3, 4
5	Introduction to Total Productive Maintenance (TPM)	1, 2, 3, 4
6	Introduction to ISO9000, ISO1400, QS9000	1, 2, 3, 4
7	Contemporary Trends	1, 2, 3, 4
8	Introduction to Probability Theory	1, 2, 3, 4
9	Reliability Concepts	1, 2, 3

School of Engineering

Department of Mechanical Engineering

Course Code: SEME4521 Course Name: Tools Design

Prerequisite Course(s): SEME3031 – Dynamics of Machinery, SEME3140-Design of Machine

Elements, SEME4061 - Design of Power Transmission Elements

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Teaching Scheme (Hours/Week) Examina				me (Ma	rks)	
Theory	Dwaatiaal	Tutorial	Cuadit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn the basics of various tools for different operations.
- learn the design procedure for various dies for punching, blanking etc.
- impart the ability for selection of proper jigs and fixtures for different manufacturing operations.
- understand the standard data catalogue for various tools.

Section I							
Module No.	Content	Hours	Weightage in %				
1.	Introduction to Tool Design Introduction, Types of Tools, Various Manufacturing Operations, Jigs, Fixtures, Mechanics and Geometry of Chip Formation	02	5				
2.	Design of Single Point Cutting Tool Various Angles Related to Cutting Tools, Tool Signature, Effect of Angles of Single Point Cutting Tool, Recommendation for Various Angle, Material Selection for Single Point Cutting Tool, Coated Carbide.	07	15				
3.	Design of Milling Cutter Form Milling Cutter (Relieved), Types of Milling Cutter, Types of Milling, Forces in Milling, Nomenclature of Milling Cutter Elements, Selection of Cutter Geometry and Design	07	15				
4.	Design of Drills Drilling operations, Nomenclature of Twist Drill Elements, Types of Drill, Recommendation Drill Point Geometry for Various Materials, Troubleshooting Drilling Problems Power Requirement for Drilling, Flat Drills	06	15				
	Section II						
Module No.	Content	Hours	Weightage in %				
1.	Design of Drill Jigs Introduction, Types of Drill Jigs, Chip Formation in Drilling, General Consideration in Design of Drill Jigs, Methods of Construction, Design Problems	05	10				

2.	Design of Fixtures Milling Fixtures, Boring Fixtures, Broaching Fixtures, Lathe Fixtures, Design Problems, Universal Fixture	05	10
3.	Design of Sheet Metal Blanking and Piercing Dies Introduction to Die cutting operations, Blanking and Piercing Die Construction, Pilots, Strippers and Pressure Pads, Strip Layout, Die Clearance, Design Problems	07	15
4.	Design of Sheet Metal Bending, Forming and Drawing Dies Introduction, Bending Dies, Forming Dies, Drawing Operations, Determination of Blank Size, Design Problems	06	15

Title	Author/s	Publication
Tool Design	Donaldson	McGRAW-HILL Publication

Reference Book(s):

Title	Author/s	Publication
Fundamentals of tool design with CD	Nee, John	SME Publication

Web Material Links:

https://nptel.ac.in/courses/112105233/

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Tests Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME4521	TOOL DESIGN
CO1	Select the materials for various tools.
CO2	Design the single point cutting tools, piercing, blanking, forming, and bending dies.
CO3	Modify the design of jigs and fixtures for drilling, milling, broaching etc.
CO4	Apply the design procedure to design milling cutter.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to tool design	1,2,3
2	Design of single point cutting tool	1,2, 3, 4, 5, 6
3	Design of milling cutter	1, 2, 3, 4, 5, 6
4	Design of Drills	1, 2, 3, 4, 5, 6
5	Design of Drill Jigs	1, 2, 3, 4, 5, 6
6	Design of Fixtures	1, 2, 3, 4, 5, 6
7	Design of Sheet Metal Blanking and Piercing Dies	1, 2, 3, 4, 5, 6
8	Design of Sheet Metal Bending Forming and Drawing Dies	1, 2, 3, 4, 5, 6

School of Engineering

Department of Mechanical Engineering

Course Code: SEME4511

Course Name: Design of Heat Exchangers

Prerequisite Course(s): SEME3111-Heat & Mass Transfer, SEME3130 – HVAC Systems, SEME3140

- Design of Machine Elements, SEME4061 - Design of Power Transmission

Elements

Teaching & Examination Scheme:

Teacl	ning Scheme	e (Hours/W	eek)		Exa	minati	on Schei	ne (Ma	rks)	
Theory	Dwaatiaal	Tutorial	Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- introduce and explain basics of Heat Exchanger
- calculate basis calculation applied in heat exchanger design.
- learn about analysis and design aspects in various heat exchangers.
- elaborate enhancement and performance evolution of heat exchanger.

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Introduction Classification and Selection of Heat Exchanger, Overall Heat Transfer Co-efficient, LMTD and e – NTU Analysis Methods, Fouling and its Control, Rating and Sizing Problems, Design Methodologies	08	17			
2.	Design of Double Pipe Heat Exchanger Thermal and Hydraulic Design of Inner Tube and Annulus, Pressure Loss Calculations, Hair Pin Heat Exchanger with Bare and Finned Inner Tube	10	23			
3.	Design of Compact Heat Exchangers Compact Heat Exchanger, Heat Transfer Enhancement, Plate Fin Heat Exchanger, Tube Fin Heat Exchanger, Heat Transfer and Pressure Drop Calculations	05	10			

	Section II				
Module	odule		Weightage		
No.	No. Content				
1.	Enhancement and Performance Evolution Enhancement of Heat Transfer, Performance Evaluation of Heat Transfer Enhancement Technique. Introduction to Inch Analysis	08	20		
2.	Design of Shell & Tube Heat Exchanger Construction and Basic Components, Basic Design procedure, TEMA standards, Conventional Design Methods, Bell Delaware Method, Application of Heat Exchanger	14	30		

Title	Author/s	Publication
Heat Exchanger Selection, Rating and Thermal Design	Sadik Kakac Liu H.	CRC Press, Boston, 1998
Fundamentals of Heat Exchanger Design	Ramesh K Shah	John Wiley & Sons.

Reference Book(s):

Title	Author/s	Publication
Compact Heat Exchangers	Kays V A, London A L	McGraw Hill, New York, 1964
Process Heat Transfer	Donald Q Kern	McGraw Hill

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME4511	DESIGN OF HEAT EXCHANGERS
CO1	To select appropriate heat exchanger for the given application and to measure the
	performance degradation of heat exchangers due to fouling
CO2	Analyse thermal and hydraulic performance of double pipe and shell & tube heat
	exchanger.
CO3	Estimate thermal and hydraulic performance of various compact heat exchanger.
CO4	Compare various heat transfer enhancement techniques and to apply process
	optimization techniques for heat exchanger design.

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1, 2
2	2 Design of Double Pipe Heat Exchanger	
3	Design of Compact Heat Exchanger	1, 2, 3, 4, 5
4	Enhancement and Performance Evolution	1, 2, 5
5	Design of Shell & Tube Heat Exchanger	1, 2, 3, 4, 5

P P Savani University School of Engineering

Department of Mechanical Engineering

Course Code: SEME4540

Course Name: Industry 4.0 & IoT

Prerequisite Course(s): -- SEME4011 - Control Engineering, SECE1010 - Basics of Computer

Programming

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
,	The same December of		and Tutorial Cradit	Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
	Theory	Practical	Tutorial	Crean	CE	ESE	CE	ESE	CE	ESE	Total
	03	00	00	03	40	60	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• learn the basics of various tools for different operations.

- learn the design procedure for various dies for punching, blanking etc.
- impart the ability for selection of proper jigs and fixtures for different manufacturing operations.
- understand the standard data catalogue for various tools.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Introduction to Industry 4.0 Introduction, core idea of Industry 4.0,origin concept of industry 4.0,Industry 4.0 production system, current state of industry 4.0, Technologies, How is India preparing for Industry 4.0.	02	5				
2.	A Conceptual Framework for Industry 4.0 Introduction, Main Concepts and Components of Industry 4.0, State of Art, Supportive Technologies, Proposed Framework for Industry 4.0.	07	15				
3.	Technology Roadmap for Industry 4.0 Introduction, Proposed Framework for Technology Roadmap, Strategy Phase, Strategy Phase, New Product and Process Development Phase.	07	15				
4.	Advances in Robotics in the Era of Industry 4.0 Introduction, Recent Technological Components of Robots-Advanced Sensor Technologies, Internet of Robotic Things, Cloud Robotics, and Cognitive Architecture for Cyber-Physical Robotics, Industrial Robotic Applications- Manufacturing, Maintenance and Assembly.	06	15				
5	Obstacles and Framework Conditions for Industry 4.0 Lack of A Digital Strategy alongside Resource Scarcity, Lack of standards and poor data security, Financing conditions, availability of skilled workers, comprehensive broadband infra- structure, state support, legal framework, protection of						

	corporate data, liability, handling personal data						
	Section II						
Module No.	Content	Hours	Weightage in %				
1.	Understanding the Internet of Things (IoT) Industrial Internet of Things and Cyber Manufacturing Systems, Application map for Industrial Cyber Physical Systems, Cyber Physical Electronics production.	05	10				
2.	Modeling of CPS and CMS Modeling of Cyber Physical Engineering and manufacturing, Model based engineering of supervisory controllers for cyber physical systems, formal verification of system, components, Evaluation model for assessments of cyber physical production systems.	05	10				
3.	Architectural Design Patterns for CMS and IoT CPS-based manufacturing and Industries 4.0., Integration of Knowledge base data base and machine vision, Interoperability in Smart Automation, Enhancing Resiliency in Production Facilities through CPS. Communication and Networking of IIoT.	07	15				
4.	Artificial Intelligence and Data Analytics for Manufacturing Application of CPS in Machine tools, Digital production, Cyber Physical system Intelligence, Introduction to big data and machine learning and condition Monitoring.	06	15				

Title	Author/s	Publication
Inside the Internet of Things (IoT)	-	Deloitte University Press
Industry 4.0: Managing the Digital	Alp Ustundag and	
Transformation	Emre Cevikcan,	
The Fourth Industrial Revolution	Klaus Schwab	
The Challenges of Industry 4.0 for Small	Christian	
and Medium Sized Enterprises	Schroder	

Reference Book(s):

Title	Author/s	Publication
The concept Industry 4.0	Bartodziej, Christoph Ian	
The Internet of Things: Key Applications and Protocols	-	Wiley Publications

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Tests Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination will consist of 60 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

П	After the completion of the course, the following course outcomes will be able to.				
	SEME4540 INDUSTRY 4.0 & IoT				
	CO1	Describe Industry 4.0 and Scope for Industry Industry			

CO2	Demonstrate conceptual framework and roadmap of Industry 4.0
CO3	Describe Industrial Internet of Things and Cyber Physical Manufacturing
CO4	Describe Architectural design patterns for Industrial Internet of Things

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Industry 4.0	1,2
2	A Conceptual Framework for Industry 4.0	1,2
3	Technology Roadmap for Industry 4.0	1, 2
4	Advances in Robotics in the Era of Industry 4.0	1, 2, 3
5	Obstacles and Framework Conditions for Industry 4.0	1, 2, 3
6	Understanding the Internet of Things (IoT)	1, 2, 3
7	Modeling of CPS and CMS	1, 2, 3, 4
8	Architectural Design Patterns for CMS and IoT	1, 2, 3, 4
9	Artificial Intelligence and Data Analytics for Manufacturing	1, 2, 3, 4